Investigations on experimental, theoretical spectroscopic, electronic excitations, molecular docking of Sulfaguanidine (SG): An antibiotic drug

2021 ◽  
Vol 783 ◽  
pp. 139049
Author(s):  
Aysha Fatima ◽  
Meenakshi Singh ◽  
Neha Singh ◽  
Sandhya Savita ◽  
Indresh Verma ◽  
...  
2014 ◽  
Vol 41 (4) ◽  
pp. 2377-2387 ◽  
Author(s):  
Manjunath D. Meti ◽  
Kirthi S. Byadagi ◽  
Sharanappa T. Nandibewoor ◽  
Shrinivas D. Joshi ◽  
Uttam A. More ◽  
...  

2020 ◽  
Vol 17 (6) ◽  
pp. 745-756
Author(s):  
Adnan Cetin ◽  
Havva Kurt

Background: The pyrazole structure is an important heterocyclic structure and plays critical roles in agriculture, industrial and medicine. Furthermore, compounds containing pyrazole are known to exhibit various biological properties such as antibacterial, antifungal, anticancer, antiinflammatory, antidepressant, antipyretic, antiviral, anti-tubercular and anti-HIV activities. Because of these properties, pyrazole molecules have become a very popular topic for organic chemists. Methods: A series newly substituted pyrazole molecules were synthesized and characterized. Their antimicrobial activities were investigated by disk diffusion method against some gram positive bacteria and gram negative bacteria. Results: The present results indicated that the some test compounds were active in a broad spectrum against important human pathogenic microorganisms. The substituted pyrazoles including carbazone (7a, b) and thiazolidine (8a, b) showed a wide variety of biological activities. The results showed that synthesized pyrazole, compounds 7b and 8b are highly active and more potent in both biological and molecular docking simulation studies. Conclusion: The synthesized pyrazole molecules showed moderate antibacterial activities against the tested microorganism compared to antibiotic drug. Some test compounds (7b and 8b) might be used as new antibacterial agents.


Author(s):  
P. E. Batson ◽  
C. H. Chen ◽  
J. Silcox

Electron energy loss experiments combined with microscopy have proven to be a valuable tool for the exploration of the structure of electronic excitations in materials. These types of excitations, however, are difficult to measure because of their small intensity. In a usual situation, the filament of the microscope is run at a very high temperature in order to present as much intensity as possible at the specimen. This results in a degradation of the ultimate energy resolution of the instrument due to thermal broadening of the electron beam.We report here observations and measurements on a new LaB filament in a microscope-velocity spectrometer system. We have found that, in general, we may retain a good energy resolution with intensities comparable to or greater than those available with the very high temperature tungsten filament. We have also explored the energy distribution of this filament.


1985 ◽  
Vol 147 (11) ◽  
pp. 523 ◽  
Author(s):  
M.I. Klinger ◽  
Ch.B. Lushchik ◽  
T.V. Mashovets ◽  
G.A. Kholodar' ◽  
M.K. Sheinkman ◽  
...  

2015 ◽  
Author(s):  
Manik Ghosh ◽  
Kamal Kant ◽  
Anoop Kumar ◽  
Padma Behera ◽  
Naresh Rangra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document