Synthesis, Antibacterial Activity and Molecular Docking Studies of New Pyrazole Derivatives

2020 ◽  
Vol 17 (6) ◽  
pp. 745-756
Author(s):  
Adnan Cetin ◽  
Havva Kurt

Background: The pyrazole structure is an important heterocyclic structure and plays critical roles in agriculture, industrial and medicine. Furthermore, compounds containing pyrazole are known to exhibit various biological properties such as antibacterial, antifungal, anticancer, antiinflammatory, antidepressant, antipyretic, antiviral, anti-tubercular and anti-HIV activities. Because of these properties, pyrazole molecules have become a very popular topic for organic chemists. Methods: A series newly substituted pyrazole molecules were synthesized and characterized. Their antimicrobial activities were investigated by disk diffusion method against some gram positive bacteria and gram negative bacteria. Results: The present results indicated that the some test compounds were active in a broad spectrum against important human pathogenic microorganisms. The substituted pyrazoles including carbazone (7a, b) and thiazolidine (8a, b) showed a wide variety of biological activities. The results showed that synthesized pyrazole, compounds 7b and 8b are highly active and more potent in both biological and molecular docking simulation studies. Conclusion: The synthesized pyrazole molecules showed moderate antibacterial activities against the tested microorganism compared to antibiotic drug. Some test compounds (7b and 8b) might be used as new antibacterial agents.

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Radiet Anbessie Tirkeso ◽  
Tilahun Wubalem Tsega ◽  
Gebru G/Tsadik Amdemichael

As multidrug resistant pathogens are emerging, the search for novel potent drug candidates is ever going. Heterocycles are known by their broad spectrum of biological activities, so a search for a new drug from heterocycles can elevate the chance of success. The aim of this study was to obtain novel potent antimicrobial compounds. In line with this, 1H-imidazo [5, 6-f] [1,10] phenanthroline-2(3H)-thione and its complexes (Ni(II) and Cu(II)) were synthesized, characterized, and evaluated against bacterial strains. The compounds were characterized by elemental analyses (C, H, N, and S), FT-IR, 1H-NMR, 13C-NMR, AAS, UV-Vis spectra, and molar conductivity measurement. The results showed that the ligand is bidentate, and the molar conductivity measurement indicates that complexes are electrolytic. Electronic spectral study showed octahedral and distorted octahedral geometry for the Ni(II) and Cu(II) complex, respectively. The ligand and its complexes were screened against four bacterial strains using disk diffusion method. The result revealed that the Ni(II) complex showed more bioactivity than gentamicin against Staphylococcus aureus and Escherichia coli, while the Cu(II) complex is more active than the Ni(II) complex against Bacillus subtilis. Both Cu(II) and Ni(II) complexes exhibit higher antibacterial activities than the free ligand.


2021 ◽  
Vol 14 ◽  
Author(s):  
Saruchi ◽  
Anjali Saini ◽  
Vaneet Kumar

Introduction: Plants have been used for thousands of years to treat health disorders, to prevent diseases including epidemics, to flavor and conserve food. It is estimated that 250 to 500 thousand plant species are present on the earth, out of which only 10% is used as a source of food by humans and animals Objective: In the present work, antibacterial activity of five different Indian spices: turmeric, clove, pepper, cinnamon and garlic were investigated against pathogens isolated from wound samples. Method: The unknown bacteria were identified by different types of morphological and biochemical techniques such as serial dilutions, spread plate methods, morphological studies and biochemical tests. The swabs of the patients were inoculated in 10 mL of sterile nutrient broth and incubated at 37oC for 24 h. The antibacterial activities of these Indian spices were evaluated using the disk diffusion method. A suspension of the microorganisms to be tested was spread on nutrient agar and MacConkey agar medium. The filter paper discs were placed on the agar plates, which were saturated with extract of spice. The plates were then incubated at 37oC for 24 h.. After incubation, the zone of inhibition was determined by evaluating the diameter of the zone of inhibition. Results: The antibacterial activities of these Indian spices were evaluated using the disk diffusion method and the inhibitory zones were recorded. It was clear from the result that cinnamon had a larger inhibition zone against P1NA3, P1MAC1 and least with P2NA2. Garlic showed a larger zone of inhibition against P2NA2, P3NA3 and least for P1MAC1. Clove had maximum zone of inhibition against P1MAC2 and least with P3NA3. These spices showed zone of inhibition somewhat close to the control antibiotic drug ampicilline. Conclusion: P1MNC2 showed a maximum zone of inhibition with clove (3 cm) at 100%. P2NA2 showed the highest antibacterial activity with garlic (3.6 cm) at 100% and minimum with cinnamon (1.1cm) at 20%. P3NA3 showed maximum antibacterial activity result with garlic (4.2 cm) at 100% and minimum with clove (1.2cm) at 20%. Spices are economical, more accessible to most of the population in the world. So, medicinal plants should be encouraged to use as potential sources of new drugs.


2021 ◽  
Author(s):  
Gül Özdemir ◽  
Namık Kılınç ◽  
Sevda Manap ◽  
Murat Beytur ◽  
Muzaffer Alkan ◽  
...  

A series of 2-ethoxy-4-{[3-alkyl(aryl)-4,5-dihydro-1H-1,2,4-triazol-5-on-4-yl]-azomethine}-phenyl benzenesulfonates (3) were synthesized from the reactions of 3-alkyl(aryl)-4-amino-4,5-dihydro-1H-1,2,4-triazol-5-ones (1) with 2-ethoxy-4-formyl-phenyl benzenesulfonate (2). N-acetyl derivatives (4) of compounds 3 were also obtained. Then, the compounds 3 have been treated with morpholine and 2,6-dimethylmorpholine in the presence of formaldehyde to synthesize 2-ethoxy-4-{[1-(morpholine-4-yl-methyl)-3-alkyl(aryl)-4,5-dihydro-1H-1,2,4-triazol-5-on-4-yl]-azomethine}-phenyl benzenesulfonates (5) and 2-ethoxy-4-{[1-(2,6-dimethylmorpholine-4-yl-methyl)-3-alkyl(aryl)-4,5-dihydro-1H-1,2,4-triazol-5-on-4-yl]-azomethine}-phenyl benzenesulfonates (6), respectively. The structures of twenty-six new compounds were identified by using elemental analysis, IR, 1H NMR, 13C NMR, and MS spectral data. In addition, in vitro antibacterial activities of the new compounds were evaluated against six bacteria such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis, Bacillus cereus and Klepsiella pneumonia according to agar well diffusion method. Furthermore, in order to determine the possible antidiabetic properties of the synthesized 1,2,4-triazole derivatives, inhibition effects on the AR enzyme were investigated and molecular docking studies were carried out to determine the receptor-ligand interactions of these compounds. IC50 values of triazole-derived compounds (6a, 6b, 6d-g) against AR enzyme were determined as 0.95 µM, 0.75 µM, 1.83 µM, 0.62 µM, 1.05 µM, 1.06 µM, respectively. Considering the docking scores and binding energies obtained docking studies, it has been shown that molecules fit very well to the active site of the AR enzyme.


2020 ◽  
Vol 17 (7) ◽  
pp. 873-883
Author(s):  
Pulabala Ramesh ◽  
Vankadari Srinivasa Rao ◽  
Puchakayala Muralidhar Reddy ◽  
Katragadda Suresh Babu ◽  
Mutheneni Srinivasa Rao

Background:: Most of the currently available pharmaceutical drugs are either natural products or analogues of natural products. Flavonoids are plant based natural polyphenolic compounds which exhibit a wide range of biological activities. Chrysin, a natural flavone, exhibits several biological activities like antiallergic, anti-inflammatory and anticancer. Many efforts were made to enhance the biological activity of chrysin. In continuation of our work on synthetic modifications of chrysin, amino-alcohol containing heterocyclic moiety is linked to chrysin at C (7) position to enhance its biological activity. Methods:: A series of new C (7) modified analogues of chrysin (3a-k) have been designed and synthesized in two steps. Chrysin, on reacting with epichlorohydrin in the presence of K2CO3 in DMF gave epoxide (2) which was made to react with cyclic secondary amines in the presence of LiBr to form the designed products (3a-k). All the synthesized compounds (3a-k) were well characterized by 1H NMR, 13C NMR and mass spectral data. The synthesized analogues (3a-k) were screened for their in vitro biological activities against a panel of bacterial and fungal strains. Molecular docking studies were also performed on these compounds with E. coli FabH (1HNJ) and S. cerevisiae (5EQB) enzymes, to support the observed biological activities. Results:: A series of new 2-hydroxy 3-amino chrysin derivatives (3a-k) were synthesized in two steps, starting with chrysin and their structures were characterized by spectral analysis. In vitro biological activities of these analogues against a panel of bacterial and fungal strains indicated that some of the derivatives manifested significant activities compared to standard drugs. Molecular docking and binding energy values were also correlated with experimental antimicrobial screening results. Lipinski’s “rule of five” is also obeyed by these analogues (3a-k) and exhibit drug-likeness. Conclusion:: In the present study, a series of new C (7) modified chrysin analogues (3a-k) were synthesized and tested for their in vitro antimicrobial activities. These biological studies indicated that some of the derivatives exhibited moderate to good antimicrobial activities compared to standard drugs. Molecular docking studies performed on these compounds correlated with the experimental antimicrobial activities. The results obtained in the study will be useful in establishing new drug entities to control the pathogenic epidemics.


2020 ◽  
Vol 11 (SPL4) ◽  
pp. 2407-2416
Author(s):  
Mohammed Fadhil Eesee ◽  
Subbarao M

Substituted 2, 4-Dihydroxyacetyl-4-Hydroxybenzoic Hydrazone, which is known for their versatile biological activities, have been reported to show significant anti lung cancer activities. In the present study, a novel series of some 2, 4-Dihydroxyacetyl-4-Hydroxybenzoic Hydrazone ligands were complexed with Nickle and synthesized to develop more potent anti-cancer activities. The Ni complexes were synthesized in good to excellent yields, and equimolar solutions of 2, 4-dihydroxyacetophenone in methanol and 4-hydroxy benzoic hydrazide in hot aqueous ethanol were refluxed for two hours on a water bath and cooled. I.R., NMR and HRMS spectral analysis characterized the structures of all newly synthesized compounds. The title compounds were tested against a panel of Gram-positive and Gram-negative bacteria for in vitro antibacterial activity. The compounds were docked to BCL2 protein, an expressed protein of lung cancer for anti-cancer studies. All the title compounds were screened for anti-cancer activity using BCL2 lung protein based on insilico molecular docking studies, and the results showed IC50 value ranging between 40-45μg.


Author(s):  
P. Jacquline Rosy ◽  
S. Kalyanasundaram ◽  
K. Santhanalakshmi ◽  
S. Muthukumar

The molecular docking and antimicrobial activity studies of synthesized 4-(4-hydrazinylbenzyl)-1,3-oxazolidin-2-one were performed, in order to provide insights into the mechanism of action of potential antimicrobial drugs for resistant microorganisms. antimicrobial activity of compounds was investigated in vitro under aseptic conditions, using the disk diffusion method, against various gram positive and gram negative pathogenic microorganisms such as Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Bacillus substilis and Staphylococcus aureus. Molecular docking was performed to study the binding activity of synthesized hydrazide onto the active site of DNA Gyrase Protein in an effort to increase the understanding of the action and resistance of synthesized hydrazide in this bacterium.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rizk E. Khidre ◽  
Ibrahim Ali M. Radini

AbstractA novel series of substituted 4,6-dimethyl-2-oxo-1-(thiazol-2-ylamino)-1,2-dihydropyridine-3-carbonitrile derivatives 6, 9, 13, 15, and 17 was synthesized in a good to excellent yield from the reaction of 1-(3-cyano-4,6-dimethyl-2-oxopyridin-1(2H)-yl)thiourea with 2-oxo-N'-arylpropanehydrazonoyl chloride, chloroacetone, α-bromoketones, ethyl chloroacetate, and 2,3-dichloroquinoxaline, respectively. The potential DNA gyrase inhibitory activity was examined using in silico molecular docking simulation. The novel thiazoles exhibit dock score values between − 6.4 and − 9.2 kcal/mol and they were screened for their antimicrobial activities. Compound 13a shown good antibacterial activities with MIC ranged from 93.7–46.9 μg/mL, in addition, it shown good antifungal activities with MIC ranged from 7.8 and 5.8 μg/mL.


2020 ◽  
Vol 16 ◽  
Author(s):  
Adinath D. Badar ◽  
Shubham M. Sulakhe ◽  
Mahesh B. Muluk ◽  
Naziya N. M. A. Rehman ◽  
Prashant P. Dixit ◽  
...  

Background: Thiosemicarbazone, 1,2,3-triazole and their derivatives received great pharmaceutical importance due to their prominent biological activities. In the present study, the molecular hybrid thiosemicarbazone-1,2,3-triazoles derivatives were synthesized and screened for their antimicrobial activities. Methods: A series of thiosemicarbazone clubbed with 1,2,3-triazole derivatives were synthesized via click chemistry approach in good yields. The structures of synthesized compounds were assigned by their spectral data. The in vitro antimicrobial activity was performed by the agar well diffusion method. A molecular docking study was performed to identify the possible mode of action of synthesized derivatives. Results: The compounds 5d, 5h, 5i and 5k have exhibited excellent antimicrobial activities against both antibacterial and antifungal pathogens. The active thiosemicarbazone-1,2,3-triazole derivatives have shown excellent binding affinity towards DNA gyrase. Conclusion: The molecular hybrid thiosemicarbazone-1,2,3-triazole derivatives were synthesized. The newly synthesized compounds were evaluated for their antimicrobial activities. Few of the thiosemicarbazone-1,2,3-triazoles derivatives have exhibited good antimicrobial activities. They have been shown excellent binding affinity towards DNA gyrase.


Author(s):  
Shola Elijah Adeniji

Introduction: Mycobacterium tuberculosis has instigated a serious challenge toward the effective treatment of tuberculosis. The reoccurrence of the resistant strains of the disease to accessible drugs/medications has mandate for the development of more effective anti-tubercular agents with efficient activities. Time expended and costs in discovering and synthesizing new hypothetical drugs with improved biological activity have been a major challenge toward the treatment of multi-drug resistance strain M. tuberculosis (TB). Meanwhile, to solve the problem stated, a new approach i.e. QSAR which establish connection between novel drugs with a better biological against M. tuberculosis is adopted. Methods: The anti-tubercular model established in this study to forecast the biological activities of some anti-tubercular compounds selected and to design new hypothetical drugs is subjective to the molecular descriptors; MATS7s, SM1_DzZ, SpMin4_Bhv, TDB3v and RDF70v. Ligand-receptor interactions between quinoline derivatives and the receptor (DNA gyrase) was carried out using molecular docking technique by employing the PyRx virtual screening software and discovery studio visualizer software. Furthermore, docking study indicates that compounds 20 of the derivatives with promising biological activity have the utmost binding energy of -17.79 kcal/mol. Results: Meanwhile, the interaction of the standard drug; isoniazid with the target enzyme was observed with the binding energy -14.6 kcal/mol which was significantly lesser than the binding energy of the ligand (compound 20).Therefore, compound 20 served as a template structure to designed compounds with more efficient activities. Among the compounds designed; compounds 20p was observed with better anti-tubercular activities with more prominent binding affinities of -24.3kcal/mol. Conclusion: The presumption of this research aid the medicinal chemists and pharmacist to design and synthesis a novel drug candidate against the tuberculosis. Moreover, in-vitro and in-vivo test could be carried out to validate the computational results.


Author(s):  
M. Sathish Kumar ◽  
M. Vijey Aanandhi

The fused pyrimidine derivatives are potent tyrosine kinase and thymidylate synthase inhibitors. The compound 3-(4-sulphonyl amino)-2-methyl thio-6-phenyl azo-5, 7-dimethyl pyrido(2,3-d)pyrimidin-4-one was synthesized from Ethyl 2-amino-4,6-dimethylpyridine-3-carboxylate, benzene diazonium chloride, benzene sulphonyl amino isothiocyanate in subsequent reactions. 1-(1, 3-benzothiazol-2-yl)-3-methyl-4-phenyl-1H-pyrazolo[3,4-d]pyrimidines were synthesized from 1, 3-benzothiazole, 2-thiol, Hydrazine Hydrate, 2-hydrazinyl-1, 3-benzothiazole and aldehydes in subsequent reactions. Twenty-five derivatives pyrimidine scaffolds were designed and performed molecular docking studies for the ability to inhibit the target protein using molecular docking simulation, selective compounds were synthesized and characterized by spectral methods. All the synthesized compounds evaluated for their antioxidant activity and MTT assay exhibited compounds 13c, 13e and 14d can be potential anticancer candidates against MCF-7, Hep G2 and Hela cell lines respectively. Based on all the studies conclude that good agreement was observed between the top-ranked docking scores and top experimental inhibitors when compared with standards ascorbic acid and imatinib. Hence, the compounds could be considered as new anticancer hits for further lead optimization.


Sign in / Sign up

Export Citation Format

Share Document