Effect of anionic/nonionic surfactants on the wettability of coal surface

2021 ◽  
pp. 139130
Author(s):  
Junqing Meng ◽  
Lijuan Wang ◽  
Shuo Zhang ◽  
Yingpei Lyu ◽  
Junkai Xia
2013 ◽  
Vol 58 (2) ◽  
pp. 449-463 ◽  
Author(s):  
Mieczysław Żyła ◽  
Agnieszka Dudzińska ◽  
Janusz Cygankiewicz

Ethane constitutes an explosive gas. It most often accompanies methane realizing during exploitation and mining works. In this paper the results of ethane sorption have been discussed on three grain classes of six selected hard coal samples collected from active Polish coalmines. On the basis of obtained results, it has been stated that the tested hard coals prove differentiated sorption power with reference to ethane. Te extreme amount of ethane is sorbed by low carbonized hard coal from “Jaworzno” coalmine. This sort of coal shows great porosity, and great content of oxygen and moisture. The least amount of ethane is sorbed by hard coal from “Sośnica” coalmine. This sort of coal possesses relatively a great deal of ash contents. Together with the process of coal disintegration, the amount of sorbed ethane increases for all tested coal samples. Between tested coals there are three medium carbonized samples collected from “Pniówek”, “Chwałowice” “Zofiówka” coalmines which are characterized by small surface values counted according to model BET from nitrogen sorption isotherms determined at the temperature of 77.5 K. The samples of these three coals prove the highest, from between tested coals, increase of ethane sorption occurring together with their disintegration. These samples disintegrated to 0,063-0,075 mm grain class sorb ethane in the amount corresponding with the sorption quantity of low carbonized coal from “Jaworzno” coalmine in 0.5-0.7 mm grain class. It should be marked that the low carbonized samples collected from “Jaworzno” and Wesoła” coalmines possess large specific surface and great porosity and belong to coal group of “loose” spatial structure. Regarding profusion of sorbed ethane on disintegrated medium carbonized samples from “Pniówek”, “Zofiówka”, “Chwałowice” coalmines it can be supposed that in the process of coal disintegration, breaking their “compact’ structure occurs. Loosened structure of medium carbonized coals results in increasing accessibility of ethane particles to sorption centres both electron donors and electron acceptors which are present on hard coal surface. The surface sorption centre increase may result in formation a compact layer of ethane particles on coal surface. In the formed layer, not only the strengths of vertical binding of ethane particles with the coal surface appear but also the impact of horizontal strengths appears which forms a compact layer of sorbed ethane particles. The surface layer of ethane particles may lead to explosion.


2009 ◽  
Vol 46 (5) ◽  
pp. 272-278 ◽  
Author(s):  
E. A. M. Gad ◽  
E. M. S. Azzam ◽  
I. Aiad ◽  
W. I. M. El-azab

HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 607b-607
Author(s):  
W. Tietjen ◽  
P.J. Nitzsche ◽  
W.P. Cowgill ◽  
M.H. Maletta ◽  
S.A. Johnston

`Market Prize' and `Bravo' cabbage (Brassica oleracea Var. capitata L.), transplanted as peat plug and bareroot plants into a field naturally infested with Plasmodiophora brassicae, Woronin, were treated immediately after planting with a liquid or a granular surfactant. APSA 80™, applied in transplant water, significantly reduced percent clubbing and disease severity index (DSI) compared to control treatments. Miller Soil Surfactant Granular™ did not significantly reduce percent clubbing or DSI. There was a significant effect of cultivar on percent clubbing and DSI. There was no significant effect of transplant type on percent clubbing or DSI. This year's study culminates five years of investigation of surfactants for clubroot control. Specific surfactants have proven to be an effective control of clubroot in cabbage. Chemical names used: nonylphenoxypolyethoxyethanol (APSA 80™); alpha-alkanoic-hydro omega-hydroxy poly (oxyethylene) (Miller Soil Surfactant Granular™).


1999 ◽  
Vol 40 (4-5) ◽  
pp. 99-105 ◽  
Author(s):  
A. Lopez ◽  
G. Ricco ◽  
R. Ciannarella ◽  
A. Rozzi ◽  
A. C. Di Pinto ◽  
...  

Among the activities appointed by the EC research-project “Integrated water recycling and emission abatement in the textile industry” (Contract: ENV4-CT95-0064), the effectiveness of ozone for improving the biotreatability of recalcitrant effluents as well as for removing from them toxic and/or inhibitory pollutants has been evaluated at lab-scale. Real membrane concentrates (pH=7.9; TOC=190 ppm; CDO=595 ppm; BOD5=0 ppm; Conductivity=5,000 μS/cm; Microtox-EC20=34%) produced at Bulgarograsso (Italy) Wastewater Treatment Plant by nanofiltering biologically treated secondary textile effluents, have been treated with ozonated air (O3conc.=12 ppm) over 120 min. The results have indicated that during ozonation, BOD5 increases from 0 to 75 ppm, whereas COD and TOC both decrease by about 50% and 30 % respectively. As for potentially toxic and/or inhibitory pollutants such as dyes, nonionic surfactants and halogenated organics, all measured as sum parameters, removals higher than 90% were achieved as confirmed by the complete disappearance of acute toxicity in the treated streams. The only ozonation byproducts searched for and found were aldehydes whose total amount continuously increased in the first hour from 1.2 up to 11.8 ppm. Among them, formaldehyde, acetaldehyde, glyoxal, propionaldehyde, and butyraldehyde were identified by HPLC.


2013 ◽  
Vol 9 (6) ◽  
pp. 723-729 ◽  
Author(s):  
Faiyaz Shakeel ◽  
Nazrul Haq ◽  
Fars Alanazi ◽  
Ibrahim Alsarra
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document