scholarly journals Effect of ignition heat source on design fire curve of polyethylene foam in a compartment fire

2020 ◽  
Vol 22 ◽  
pp. 100790
Author(s):  
Jung Wook Park ◽  
Ohk Kun Lim ◽  
Woo Jun You
Author(s):  
Hamed H. Saber ◽  
Ahmed Kashef ◽  
Alex Bwalya

A number of fire ventilation scenarios were investigated in order to identify the proper ventilation scheme for conducting design fire tests in a medium-sized residential room of a size of 4.2 m long, 3.8 m wide and 2.4 m high. The ventilation schemes were based on using a window, door, or both with different sizes. The fuel package that was used in all scenarios consisted of a mock-up sofa made of polyurethane foam and two wood cribs underneath it. The selection of this fuel package is supported by fire statistics that many fatal residential fires begin with an item of upholstered furniture. The CFD technique was used to conduct the numerical simulations for eleven ventilation scenarios using the Fire Dynamics Simulator (FDS) version 5. The effect of window and door sizes, and fire load location on the heat release rate, burning rate, temperature during the period of fully-developed fire (post-flashover), and the onset of post-flashover and its duration were investigated.


2011 ◽  
Vol 15 (2) ◽  
pp. 339-352 ◽  
Author(s):  
Milan Blagojevic ◽  
Dusica Pesic

An idealized temperature curve of compartment fire has three, distinct phases: growth phase, steady-burning (or fully developed) phase, and decay phase. Standard temperature-time curves are not suitable for describing the fire phenomena because it does not take into account fire load nor ventilation conditions, and fire according to these curves never decays. The temperature curve of compartment fire, especially the growth phase, may be treated like pulse phenomena. This means that it is possible to approximate the fire development with some suitable function that satisfactory describes the pulse phenomena. The shape of the time-temperature curve for fire with flashover has characteristic peak before the decay phase, or slow decreases before the decay phase - in absence of flashover. In this paper we propose the definition of the time-temperature curve by means of a unique function in which the quantities of fuel and ventilation conditions are defined with parameters. This function is very convenient for approximation of the development of compartment fire with flashover, for smouldering combustion which has fire curve without characteristic peak, this function can be used only for approximation of growth period of fire.


2020 ◽  
Vol 34 (3) ◽  
pp. 18-27 ◽  
Author(s):  
Hyo-Yeon Jang ◽  
Cheol-Hong Hwang ◽  
Chang Bo Oh ◽  
Dong-Gun Nam

An actual fire test was performed on single combustibles placed in a local cinema complex, and quantitative differences in the maximum heat release rate (HRR) and fire growth rate were investigated based on the design fire curve methods (i.e., the general and 2-stage methods). In terms of combustible use and fire load, a total of 12 combustibles were selected, classified into cinema lounge and movie theater. It was found that the maximum HRR and fire growth rate determined using the two-stage method were quantitatively different from those of the general method. The application of the two-stage method, which can be used to determine the fire growth rate of the initial fire stage more precisely, could be useful in accurately predicting the activation time of fire detectors and fire-extinguishing facilities, as well as the available safe egress time (ASET) and required safe egress time (RSET).


Sign in / Sign up

Export Citation Format

Share Document