scholarly journals Evaluation of Design Fire Curves for Single Combustibles in a Cinema Complex

2020 ◽  
Vol 34 (3) ◽  
pp. 18-27 ◽  
Author(s):  
Hyo-Yeon Jang ◽  
Cheol-Hong Hwang ◽  
Chang Bo Oh ◽  
Dong-Gun Nam

An actual fire test was performed on single combustibles placed in a local cinema complex, and quantitative differences in the maximum heat release rate (HRR) and fire growth rate were investigated based on the design fire curve methods (i.e., the general and 2-stage methods). In terms of combustible use and fire load, a total of 12 combustibles were selected, classified into cinema lounge and movie theater. It was found that the maximum HRR and fire growth rate determined using the two-stage method were quantitatively different from those of the general method. The application of the two-stage method, which can be used to determine the fire growth rate of the initial fire stage more precisely, could be useful in accurately predicting the activation time of fire detectors and fire-extinguishing facilities, as well as the available safe egress time (ASET) and required safe egress time (RSET).

2007 ◽  
Vol 26 (4) ◽  
pp. 523-527
Author(s):  
Akihide Jo ◽  
Takayuki Orito ◽  
Norichika Kakae ◽  
Yoshifumi Ohmiya ◽  
Kaoru Wakatsuki

2021 ◽  
Vol 35 (4) ◽  
pp. 1-7
Author(s):  
Jaeyoung Lee

In this study, we conducted the modeling and generalization of the heat release rate of rigid plastic combustibles with respect to their geometrical properties. The modeling and generalization was carried out using the model proposed by Natori, which is based on the combustion behavior of wooden furniture. Previous studies that have reported the combustion of printers were used for the modeling of the heat release rate of rigid plastic combustibles. The reported heat release rate measurements of the printers were examined to determine their applicability to Natori's model. After their applicability was confirmed, to generalize the heat release rate curve, heat release rate parameters of the combustibles were analyzed with respect to their geometrical properties and constituent materials. The combustibles were classified into two groups based on their geometrical properties, and the fire growth rate, maximum heat release rate, and decay rate represented the heat release rate parameters. Furthermore, the parameters were analyzed as a function of the apparent density of the combustibles. The fire growth rate and maximum heat release rate exhibited a relatively evident correlation with the apparent density, which indicated that an accurate estimation of the heat release rate curve can be obtained from the external dimensions and weight of the combustibles.


2019 ◽  
Vol 56 (3) ◽  
pp. 1179-1196 ◽  
Author(s):  
Charlie Hopkin ◽  
Michael Spearpoint ◽  
Yong Wang ◽  
Danny Hopkin

Abstract In England, there are no fixed requirements on the parameters adopted when considering residential design fires, and analyses undertaken are often deterministic with limited consideration given to probabilistic assessments and the sensitivity of parameters. The Home Office dwelling fires dataset has been analysed, considering the fire damage area and the time from ignition to fire and rescue service arrival. From this, lognormal distributions for the maximum heat release rate (HRR) and fire growth rate of residential fires have been approximated. The mean maximum HRR ranges from 900 kW to 1900 kW, with a standard deviation ranging from 2000 kW to 3700 kW, depending on property type and room of fire origin. The mean growth rate, assuming a t2 relationship, ranges from 0.0022 kW/s2 to 0.0034 kW/s2, with a standard deviation ranging from 0.0071 kW/s2 to 0.0132 kW/s2. When considering incidents which result in immediate fire and rescue service call out following ignition, the mean growth rate increases to a range of 0.0058 kW/s2 to 0.0088 kW/s2. As a result of the analyses, design fire distributions are provided which can be adopted for probabilistic assessments. For deterministic analyses, it is proposed that an approximate 95th percentile fire may be adopted, aligning with a medium growth rate of 0.0117 kW/s2 and a maximum fuel-limited HRR in the region of 3800 kW to 4400 kW, depending on whether the dwelling is a house or an apartment. A 95th percentile design fire broadly aligns with values already specified in guidance, helping to substantiate the existing recommendations.


Author(s):  
Hyeong-Jin Kim ◽  
David G. Lilley

Abstract Heat release rates of typical items in fires are needed as a prerequisite for estimating fire growth and temperatures in structural fires. That is, these burning rates are required to be specified by the user as input to single-room and multi-room structural fire computer codes like FPETool, FASTLife and HAZARD. Data are given here that permit burning items to be specified in a useful modeled way, taking a t2-fire for the growth and decay periods, with a constant maximum heat release rate between these two periods.


2020 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Ciro Caliendo ◽  
Gianluca Genovese ◽  
Isidoro Russo

We have developed an appropriate Computational Fluid Dynamics (CFD) model for assessing the exposure to risk of tunnel users during their evacuation process in the event of fire. The effects on escaping users, which can be caused by fire from different types of vehicles located in various longitudinal positions within a one-way tunnel with natural ventilation only and length less than 1 km are shown. Simulated fires, in terms of maximum Heat Release Rate (HRR) are: 8, 30, 50, and 100 MW for two cars, a bus, and two types of Heavy Goods Vehicles (HGVs), respectively. With reference to environmental conditions (i.e., temperatures, radiant heat fluxes, visibility distances, and CO and CO2 concentrations) along the evacuation path, the results prove that these are always within the limits acceptable for user safety. The exposure to toxic gases and heat also confirms that the tunnel users can safely evacuate. The evacuation time was found to be higher when fire was related to the bus, which is due to a major pre-movement time required for leaving the vehicle. The findings show that mechanical ventilation is not necessary in the case of the tunnel investigated. It is to be emphasized that our modeling might represent a reference in investigating the effects of natural ventilation in tunnels.


2015 ◽  
Vol 17 (3) ◽  
pp. 233 ◽  
Author(s):  
A.Yu. Potanin ◽  
P.A. Loginov ◽  
E.A. Levashov ◽  
Yu.S. Pogozhev ◽  
E.I. Patsera ◽  
...  

<p>In this study, we have investigated the effect of various mechanical activation (MA) modes on phase and structure formation in powder mixtures made up to produce Ti<sub>3</sub>AlC<sub>2</sub> MAX phase. The optimal MA duration has been established which results in the maximum heat release under SHS due to accumulation of structural defects leading to the growth of internal energy. The effect of MA on the character and kinetics of combustion front propagation has been investigated. It was shown that following pretreatment of a powder mixture in a planetary ball mill, the combustion mode changes from stationary to a pulsating combustion and, consequently, the combustion rate decreases. The burning-out of the sample is partial and with interruptions (depressions). Force SHS-pressing technology was used for obtaining of compacted samples with homogeneous structure based on Ti<sub>3</sub>AlC<sub>2</sub>.</p>


2011 ◽  
Vol 10 ◽  
pp. 347-258 ◽  
Author(s):  
Yenhe Li ◽  
H. Ingason
Keyword(s):  

2022 ◽  
Vol 905 ◽  
pp. 51-55
Author(s):  
Li Wang ◽  
Ya Ya Zheng ◽  
Shi Hu Hu

The effects of two-stage aging on the microstructures, tensile properties and intergranular corrosion (IGC) sensitivity of Al-Mg-Si alloys were studied by tensile testing and IGC experiments and transmission electron microscope (TEM). The results show that the two-stage aging (180°C, 2h+160°C, 120h) can reduce the IGC sensitivity without decrease the tensile properties. The grain is distributed with high-density β′′ phases, and the grain boundary phases are spherical and intermittently distributed. The formation of the microstructure characteristic is due to the lower re-aging temperature, which results in a decline differences in the diffusion rate between the matrix and grain boundaries. As a result, the pre-precipitated phase can maintain a better strengthening effects due to the slower growth rate. The pre-precipitated phase of the grain boundary presents a spherical and intermittent distribution due to the fast coarsening speed.


2014 ◽  
Vol 604 ◽  
pp. 297-300 ◽  
Author(s):  
Ina Pundienė ◽  
Viktor Mironov ◽  
Aleksandrs Korjakins ◽  
Edmundas Spudulis

This study presents an analysis of various size metal particle waste (MP) influences on Portland cement (PC) paste hydration course, concrete sample structure densification during hardening and physical-mechanical properties. Investigations have shown that MP filler accelerates maximum heat release rate in PC pastes. MP intensifies structure development in the early phase, but slows it down in later PC hydration period. After 28-days of hardening the compressive strength of the concrete samples without MP filler is about 20% higher than of samples with MP. When in concrete composition microsilica and MP fillers are used together, compressive strength of concrete sample composition is up to 50% higher than of samples with MP filler only.


Sign in / Sign up

Export Citation Format

Share Document