Rhodolith mobility potential from seasonal and extreme waves

2021 ◽  
pp. 104527
Author(s):  
Ana Amélia Lavenère-Wanderley ◽  
Nils Edvin Asp ◽  
Fabiano L. Thompson ◽  
Eduardo Siegle
Keyword(s):  
Author(s):  
Andrew Cornett

Many deck-on-pile structures are located in shallow water depths at elevations low enough to be inundated by large waves during intense storms or tsunami. Many researchers have studied wave-in-deck loads over the past decade using a variety of theoretical, experimental, and numerical methods. Wave-in-deck loads on various pile supported coastal structures such as jetties, piers, wharves and bridges have been studied by Tirindelli et al. (2003), Cuomo et al. (2007, 2009), Murali et al. (2009), and Meng et al. (2010). All these authors analyzed data from scale model tests to investigate the pressures and loads on beam and deck elements subject to wave impact under various conditions. Wavein- deck loads on fixed offshore structures have been studied by Murray et al. (1997), Finnigan et al. (1997), Bea et al. (1999, 2001), Baarholm et al. (2004, 2009), and Raaij et al. (2007). These authors have studied both simplified and realistic deck structures using a mixture of theoretical analysis and model tests. Other researchers, including Kendon et al. (2010), Schellin et al. (2009), Lande et al. (2011) and Wemmenhove et al. (2011) have demonstrated that various CFD methods can be used to simulate the interaction of extreme waves with both simple and more realistic deck structures, and predict wave-in-deck pressures and loads.


2018 ◽  
Vol 56 (6) ◽  
pp. 755-770 ◽  
Author(s):  
Rui Teixeira ◽  
Maria Nogal ◽  
Alan O'Connor

Author(s):  
Nobuhito MORI ◽  
Tomoya SHIMURA ◽  
Tomohiro YASUDA ◽  
Hajime MASE

2021 ◽  
Vol 9 (7) ◽  
pp. 784
Author(s):  
Arnida Lailatul Latifah ◽  
Durra Handri ◽  
Ayu Shabrina ◽  
Henokh Hariyanto ◽  
E. van Groesen

This paper shows simulations of high waves over different bathymetries to collect statistical information, particularly kurtosis and crest exceedance, that quantifies the occurrence of exceptionally extreme waves. This knowledge is especially pertinent for the design and operation of marine structures, safe ship trafficking, and mooring strategies for ships near the coast. Taking advantage of the flexibility to perform numerical simulations with HAWASSI software, with the aim of investigating the physical and statistical properties for these cases, this paper investigates the change in wave statistics related to changes in depth, breaking and differences between long- and short-crested waves. Three different types of bathymetry are considered: run-up to the coast with slope 1/20, waves over a shoal, and deep open-water waves. Simulations show good agreement in the examined cases compared with the available experimental data and simulations. Then predictive simulations for cases with a higher significant wave height illustrate the changes that may occur during storm events.


1997 ◽  
Vol 119 (3) ◽  
pp. 146-150 ◽  
Author(s):  
J. Skourup ◽  
N.-E. O. Hansen ◽  
K. K. Andreasen

The area of the Central North Sea is notorious for the occurrence of very high waves in certain wave trains. The short-term distribution of these wave trains includes waves which are far steeper than predicted by the Rayleigh distribution. Such waves are often termed “extreme waves” or “freak waves.” An analysis of the extreme statistical properties of these waves has been made. The analysis is based on more than 12 yr of wave records from the Mærsk Olie og Gas AS operated Gorm Field which is located in the Danish sector of the Central North Sea. From the wave recordings more than 400 freak wave candidates were found. The ratio between the extreme crest height and the significant wave height (20-min value) has been found to be about 1.8, and the ratio between extreme crest height and extreme wave height has been found to be 0.69. The latter ratio is clearly outside the range of Gaussian waves, and it is higher than the maximum value for steep nonlinear long-crested waves, thus indicating that freak waves are not of a permanent form, and probably of short-crested nature. The extreme statistical distribution is represented by a Weibull distribution with an upper bound, where the upper bound is the value for a depth-limited breaking wave. Based on the measured data, a procedure for determining the freak wave crest height with a given return period is proposed. A sensitivity analysis of the extreme value of the crest height is also made.


2007 ◽  
Vol 3 (1) ◽  
pp. 22-27
Author(s):  
B.V. Divinsky ◽  
◽  
O.V. Pushkarev ◽  

2022 ◽  
Vol 243 ◽  
pp. 110335
Author(s):  
Ying Tang ◽  
Shi-Li Sun ◽  
Rui-Song Yang ◽  
Hui-Long Ren ◽  
Xin Zhao ◽  
...  

Author(s):  
Eirini Katsidoniotaki ◽  
Edward Ransley ◽  
Scott Brown ◽  
Johannes Palm ◽  
Jens Engström ◽  
...  

Abstract Accurate modeling and prediction of extreme loads for survivability is of crucial importance if wave energy is to become commercially viable. The fundamental differences in scale and dynamics from traditional offshore structures, as well as the fact that wave energy has not converged around one or a few technologies, implies that it is still an open question how the extreme loads should be modeled. In recent years, several methods to model wave energy converters in extreme waves have been developed, but it is not yet clear how the different methods compare. The purpose of this work is the comparison of two widely used approaches when studying the response of a point-absorber wave energy converter in extreme waves, using the open-source CFD software OpenFOAM. The equivalent design-waves are generated both as equivalent regular waves and as focused waves defined using NewWave theory. Our results show that the different extreme wave modeling methods produce different dynamics and extreme forces acting on the system. It is concluded that for the investigation of point-absorber response in extreme wave conditions, the wave train dynamics and the motion history of the buoy are of high importance for the resulting buoy response and mooring forces.


Sign in / Sign up

Export Citation Format

Share Document