Effectiveness of crystallization inhibitors in preventing salt damage in building materials

2007 ◽  
Vol 8 (3) ◽  
pp. 223-234 ◽  
Author(s):  
Barbara Lubelli ◽  
Rob P.J. van Hees
2015 ◽  
Vol 824 ◽  
pp. 127-132
Author(s):  
Iñigo Antepara ◽  
Igor Medveď ◽  
Jaromír Žumár ◽  
Robert Černý

Salts and water may cause serious damage to historical masonries. Therefore, numerous conservation treatments have been developed by research teams for the consolidation and protection of porous building materials affected by salt attack. Here the focus is on methods for obtaining an effective desalination of historical masonry, indicating their advantages and disadvantages. It is pointed out that cellulose is a favourite material added to poultices used in desalination.


2017 ◽  
Vol 10 ◽  
pp. 107-119
Author(s):  
A.S. Guimarães ◽  
J.M.P.Q. Delgado ◽  
V.P. de Freitas

Salt damage can affect the service life of numerous building structures, both historical and contemporary, in a significant way. Therefore, various conservation methods have been developed for the consolidation and protection of porous building materials exposed to the salt attack. As any successful treatment of salt damage requires a multidisciplinary attitude, many different factors such as salt solution transport and crystallization, presence and origin of salts in masonry, and salt-induced deterioration are to be taken into account. The importance of pre-treatment investigations is discussed as well; in a combination with the knowledge of salt and moisture transport mechanisms they can give useful indications regarding treatment options.Another important cause of building pathologies in buildings is the rising damp and this phenomenon it is particularly more severe with the presence of salts in water. The treatment of rising damp in historic building walls is a very complex procedure. At Laboratory of Building Physics (LFC-FEUP) a wall base hygro-regulated ventilation system was developed. This system patented, HUMIVENT, has been submitted to laboratorial monitoring and to in situ validation and a numerical simplified model was developed to facilitate the practical application. Having in mind the practical application of scientific and technological knowledge from Building Physics to practice, this paper presents the design of the system (geometry, ventilation rate and hygrothermal device), the detailing and technical specification of its different components and information about the implementation in three types of buildings: a church, a museum and a residential building.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
J. M. P. Q. Delgado ◽  
A. S. Guimarães ◽  
V. P. de Freitas ◽  
Iñigo Antepara ◽  
Václav Kočí ◽  
...  

Salt damage can affect the service life of numerous building structures, both historical and contemporary, in a significant way. In this review, various damage mechanisms to porous building materials induced by salt action are analyzed. The importance of pretreatment investigations is discussed as well; in combination with the knowledge of salt and moisture transport mechanisms they can give useful indications regarding treatment options. The methods of salt damage treatment are assessed then, including both passive techniques based on environmental control, reduction of water transport, or conversion to less soluble salts and active procedures resulting in the removal of salts from deterioration zones. It is concluded that cellulose can still be considered as the favorite material presently used in desalination poultices but hydrophilic mineral wool can serve as its prospective alternative in future applications. Another important cause of building pathologies is the rising damp and, in this phenomenon, it is particularly severe considering the presence of salts in water. The treatment of rising damp in historic building walls is a very complex procedure and at Laboratory of Building Physics (LFC-FEUP) a wall base hygroregulated ventilation system was developed and patented.


2019 ◽  
Vol 40 ◽  
pp. 183-194 ◽  
Author(s):  
Sanne J.C. Granneman ◽  
Barbara Lubelli ◽  
Rob P.J. van Hees

2001 ◽  
Vol 7 (S2) ◽  
pp. 466-467
Author(s):  
E. Doehne ◽  
C. Selwitz ◽  
D. Carson ◽  
A. de Tagle

Introduction: “In time, and with water, everything changes.” —Leonardo da Vinci The crystallization of soluble salts in porous building materials is a widespread weathering process that results in damage to important monuments and archaeological sites. Salt weathering by thenardite (sodium sulfate) and mirabilite (sodium sulfate decahydrate) is especially destructive, yet is still not fully understood. Halite (sodium chloride) in contrast, is one of the least damaging salts. Previous work has also demonstrated the importance of airflow in salt weathering. Here we present new data that help explain why sodium sulfate is so damaging and also show how crystallization modifiers and changes in airflow can reduce salt damage in laboratory experiments.Damage Mechanism: The behavior of sodium sulfate was documented using saturated solutions and oolites from Monks Park limestone (a stone well known to be vulnerable to salt damage) as test samples. Damage was evaluated based on the degree of cracking of the oolite.


Author(s):  
J. R. Millette ◽  
R. S. Brown

The United States Environmental Protection Agency (EPA) has labeled as “friable” those building materials that are likely to readily release fibers. Friable materials when dry, can easily be crumbled, pulverized, or reduced to powder using hand pressure. Other asbestos containing building materials (ACBM) where the asbestos fibers are in a matrix of cement or bituminous or resinous binders are considered non-friable. However, when subjected to sanding, grinding, cutting or other forms of abrasion, these non-friable materials are to be treated as friable asbestos material. There has been a hypothesis that all raw asbestos fibers are encapsulated in solvents and binders and are not released as individual fibers if the material is cut or abraded. Examination of a number of different types of non-friable materials under the SEM show that after cutting or abrasion, tuffs or bundles of fibers are evident on the surfaces of the materials. When these tuffs or bundles are examined, they are shown to contain asbestos fibers which are free from binder material. These free fibers may be released into the air upon further cutting or abrasion.


Author(s):  
Mykhailo Kosmii ◽  
Vasyl. Kasiianchuk ◽  
Ruslan Zhyrak ◽  
Ivan Krykhovetskyi

The purpose of this paper is to analyze and research the legal mechanisms which make it possible to improve agroecology through the organization of cultivation of Jerusalem artichoke.Methodology. The methodology includes comprehensive analysis and generalization of available scientific, theoretical, practical and applied material and development of relevant conclusions and recommendations. During the research, the following methods of scientific cognition were used: dialectical, terminological, historical and legal, logical and normative, systemic and structural, functional, normative and dogmatic, generalization methods. Results. The process of analysis and research highlighted the possibilities of cultivating Jerusalem artichoke for improving agroecology, namely improving the ecological state of the atmosphere air and soil, preparing them for organic farming. The article contains examples of practical application of tubers of Jerusalem artichoke and herbage for the production of therapeutic and prophylactic products, alternative energy and highly efficient building materials. Scientific novelty. The study found that the authors summarized and systematized the levels of legal regulation in the field of using Jerusalem artichoke for improving agroecology, preparing soil for organic farming, in particular: the inter-sectoral level which covers the interaction of agricultural and environmental law in terms of cultivation and use of Jerusalem artichoke; the level of integrated environmental and legal regulation; level of individual resource (floristic) legal regulation; the level of environmental protection (anthropoprotection) legislation.Practical importance. The results of the study can be used in law-making and environmental protection activities related to issues of cultivating and using the Jerusalem artichoke as a means of improving agroecology.


2005 ◽  
Author(s):  
J. Martyny ◽  
K. Pacheco ◽  
R. Harbeck ◽  
E. Barker ◽  
M. Sills ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document