Case Studies of Rising Damp Treatment in Historical Buildings

2017 ◽  
Vol 10 ◽  
pp. 107-119
Author(s):  
A.S. Guimarães ◽  
J.M.P.Q. Delgado ◽  
V.P. de Freitas

Salt damage can affect the service life of numerous building structures, both historical and contemporary, in a significant way. Therefore, various conservation methods have been developed for the consolidation and protection of porous building materials exposed to the salt attack. As any successful treatment of salt damage requires a multidisciplinary attitude, many different factors such as salt solution transport and crystallization, presence and origin of salts in masonry, and salt-induced deterioration are to be taken into account. The importance of pre-treatment investigations is discussed as well; in a combination with the knowledge of salt and moisture transport mechanisms they can give useful indications regarding treatment options.Another important cause of building pathologies in buildings is the rising damp and this phenomenon it is particularly more severe with the presence of salts in water. The treatment of rising damp in historic building walls is a very complex procedure. At Laboratory of Building Physics (LFC-FEUP) a wall base hygro-regulated ventilation system was developed. This system patented, HUMIVENT, has been submitted to laboratorial monitoring and to in situ validation and a numerical simplified model was developed to facilitate the practical application. Having in mind the practical application of scientific and technological knowledge from Building Physics to practice, this paper presents the design of the system (geometry, ventilation rate and hygrothermal device), the detailing and technical specification of its different components and information about the implementation in three types of buildings: a church, a museum and a residential building.

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
J. M. P. Q. Delgado ◽  
A. S. Guimarães ◽  
V. P. de Freitas ◽  
Iñigo Antepara ◽  
Václav Kočí ◽  
...  

Salt damage can affect the service life of numerous building structures, both historical and contemporary, in a significant way. In this review, various damage mechanisms to porous building materials induced by salt action are analyzed. The importance of pretreatment investigations is discussed as well; in combination with the knowledge of salt and moisture transport mechanisms they can give useful indications regarding treatment options. The methods of salt damage treatment are assessed then, including both passive techniques based on environmental control, reduction of water transport, or conversion to less soluble salts and active procedures resulting in the removal of salts from deterioration zones. It is concluded that cellulose can still be considered as the favorite material presently used in desalination poultices but hydrophilic mineral wool can serve as its prospective alternative in future applications. Another important cause of building pathologies is the rising damp and, in this phenomenon, it is particularly severe considering the presence of salts in water. The treatment of rising damp in historic building walls is a very complex procedure and at Laboratory of Building Physics (LFC-FEUP) a wall base hygroregulated ventilation system was developed and patented.


Author(s):  
Rafael Piñeiro ◽  
Eva Jimenez-Relinque ◽  
Roman Nevshupa ◽  
Marta Castellote

Primary and secondary emissions of volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) from a waterproof coal tar membrane and their effect on the indoor air quality were investigated through a case study in a residential building situated in Madrid, Spain. The air contaminants were analyzed in situ using photoionization method and several samples of contaminants were taken using three sorbents: activated carbon, XAD2 and Tenax GR. It was found that various VOCs such as toluene, p- and m-Xylene, PAHs such as naphthalene, methyl-naphthalenes, acenaphthene, acenaphthylene, phenanthrene and fluorine, volatile organic halogens including chloroform and trichlorofluoromethane, and alkylbenzene (1,2,4-trimethylbenzene) were found at concentrations, which exceeded the limits established by international and national agencies (WHO, EPA, OSHA). Some of the above organic compounds were found also in the samples of construction and building materials, which were obtained at different heights and places. The analysis of possible sources of the contaminants pointed at the original coal-tar membrane, which was applied on the terrace to be waterproof. During a posterior reparation the membrane was coated with a new one that hindered dissipation of emitted contaminants. The contaminants leached out and were absorbed by construction materials down in the dwelling. These materials then acted as secondary emission sources. To remediate the emission problem as the contaminated materials were removed and then a ventilation system was installed to force the gasses being emitted from the rest of contaminated slab outside. Follow-up has validated the success of the remediation procedure.


2013 ◽  
Vol 334-335 ◽  
pp. 31-36 ◽  
Author(s):  
A.S. Guimarães ◽  
João M.P.Q. Delgado ◽  
V.P. de Freitas

Degradation in walls of Historical Building with rising damp is a complex problem to solve, due to the thickness and heterogeneity of those walls. The traditionally treatment techniques used (such as watertight barriers, injection of hydrofuge products, etc.) show, sometimes, to be ineffective or too expensive, justifying the need to find a new approach. Experimental studies validate the effectiveness of a new treatment technique applied to the walls of old buildings wall base ventilation system. Building Physics Laboratory (LFC) is developing a model of this technique. The sizing of the treatment system is based on knowledge of the characteristics of the wall, of the geometry of the ventilation system and of the building being dealt with. In this work it is described the moisture transfer process between the moving air flux, inside the system, and the wall. Experimental results were used to validate the mathematical solution and the values obtained are very similar.


2016 ◽  
Vol 7 ◽  
pp. 128-176 ◽  
Author(s):  
J.M.P.Q. Delgado ◽  
A.S. Guimarães ◽  
V.P. de Freitas

The main goal of this work is to present a complete review of rising damp treatment in building heritage using a technique developed in our group to estimate and mitigate the height of the rising damp front and to predict the improvements of some experimental treatment techniques. The paper present a mathematical and a numerical analyse of the problem; an experimental and a practical application of the technique developed. This work is distributed into six main sections, in addition to this general Introduction: This book chapter is divided in several sections. Initially, it is presented the “state of the art” synthesis, where it is studied the techniques traditionally used for the rising damp treatment, showing the existing limitations on its application in monumental heritage and in old or ancient buildings, with specific characteristics. Then, it is performed the idea and the operating principle of the new technique, known as the wall base ventilation system, on the basis of previously conducted studies. An analytical, numerical and “in-field” study it is presented based in a case study described in detail. Finally, it is done a critical analysis of the results obtained, projecting the future work.


2012 ◽  
Vol 326-328 ◽  
pp. 54-59 ◽  
Author(s):  
A.S. Guimarães ◽  
João M.P.Q. Delgado ◽  
V.P. de Freitas

The treatment of rising damp in the walls of historical buildings is very complex, due to the thickness and heterogeneity of the walls. The techniques traditionally used for dealing with this problem (such as watertight barriers, injection of hydrofuge products, etc.) have sometimes proved ineffective, and that is why it is necessary to find a new approach. In recent years, the Building Physics Laboratory at the Faculty of Engineering, University of Porto has been conducting experimental research on the effectiveness of the wall base ventilation system, using natural or mechanical higro-regulate systems to reduce the level of the damp area. This experimental research and the simulations that were performed, clearly show that wall base ventilation is a system with potential. This paper presents the characterization of the hygro-regulated systems operation based on experimental studies developed in laboratory, which allowed the influence of the velocity of the air, condensation risk and the possibility of salt crystallization.


2016 ◽  
Vol 824 ◽  
pp. 589-597
Author(s):  
Akos Lakatos

This paper highlights wetting measurements and results carried out on four different generally used construction and some insulating materials, executed in our Building Physics laboratory in University of Debrecen, Faculty of Engineering, Debrecen, Hungary. The measurements focused on the initial state of the water up-takin procedure (240 min wetting) only, waiting for the equilibrium moisture content was not a goal of this paper. Currently, Aereated concrete, small solid brick, Porotherm and ceramsite-concrete structural members are usually applied in building structures. The measurements of water sorption investigations are so significant from the point of view of thermal sizing of the buildings. To put it simply this article can be imagined as a short time wetting sorption database comparing with our previous results, besides this article can be very useful for everyone in building physics and in building engineering. In addition building materials, insulating materials were tested and will be put forward, as well, eg.: expanded polystyrene, extruded polystyrene, poly-urethane, and some fibrous materials. Totally, 11 materials were investigated, after drying in a Venticell 111 type desiccator apparatus at 343 K to changeless weight and then wetting in a Climacell 111 type climatic chamber, where the relative humidity was varied from 25% to 95% at 293K for 240 min. As result, new isotherm curves for this short time wetting will be presented and will be compared to the literature data, MSZ-04-140-2-1991.


Author(s):  
Mykhailo Kosmii ◽  
Vasyl. Kasiianchuk ◽  
Ruslan Zhyrak ◽  
Ivan Krykhovetskyi

The purpose of this paper is to analyze and research the legal mechanisms which make it possible to improve agroecology through the organization of cultivation of Jerusalem artichoke.Methodology. The methodology includes comprehensive analysis and generalization of available scientific, theoretical, practical and applied material and development of relevant conclusions and recommendations. During the research, the following methods of scientific cognition were used: dialectical, terminological, historical and legal, logical and normative, systemic and structural, functional, normative and dogmatic, generalization methods. Results. The process of analysis and research highlighted the possibilities of cultivating Jerusalem artichoke for improving agroecology, namely improving the ecological state of the atmosphere air and soil, preparing them for organic farming. The article contains examples of practical application of tubers of Jerusalem artichoke and herbage for the production of therapeutic and prophylactic products, alternative energy and highly efficient building materials. Scientific novelty. The study found that the authors summarized and systematized the levels of legal regulation in the field of using Jerusalem artichoke for improving agroecology, preparing soil for organic farming, in particular: the inter-sectoral level which covers the interaction of agricultural and environmental law in terms of cultivation and use of Jerusalem artichoke; the level of integrated environmental and legal regulation; level of individual resource (floristic) legal regulation; the level of environmental protection (anthropoprotection) legislation.Practical importance. The results of the study can be used in law-making and environmental protection activities related to issues of cultivating and using the Jerusalem artichoke as a means of improving agroecology.


2020 ◽  
Vol 786 (11) ◽  
pp. 41-46
Author(s):  
V.V. STROKOVA ◽  
◽  
V.V. NELUBOVA ◽  
M.N. SIVALNEVA ◽  
M.D. RYKUNOVA ◽  
...  

The dynamic development of urbanization contributes to an increase in emissions of industrial waste, which is the cause dysfunction of the ecosystem balance and leads to the development of biological corrosion on building materials associated with the products of the vital activity of microorganisms. In this regard, it is necessary to assess the resistance of composites to predict the durability of building structures under conditions of biological influence of microorganisms. Binder systems of various compositions were studied: cementless nanostructured binders (NB) based on quartz sand and granodiorite, gypsum, Portland cement and alumina cement. The toxicity of binders was assessed by biotesting on living organisms – cladocerans Daphnia Magna – according to the criteria of the intensity of their growth and viability. As a result, the high environmental safety of NB is substantiated, and the ranking of the studied binders according to the degree of increase in their toxicity to test objects is presented. Fungal resistance was assessed by the ability of molds for growing and reproduction on the studied samples. It was found that the most active in terms of the development of binders were representatives of the genus Aspergillus, the intensity of growing of which in all variants did not decrease below 3 points. Gypsum and NB were especially vulnerable, where the degree of fouling repeatedly reached 5 points. Even the initially biostable cement, after the aging process, lost its stability at different extent. The obtained results indicate the need to increase the resistance of composites for various purposes under conditions of biocorrosion at the stage of design and updating of regulatory documents, including tests for fungal resistance in the list of mandatory.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Lino Bianco

AbstractRuins are a statement on the building materials used and the construction method employed. Casa Ippolito, now in ruins, is typical of 17th-century Maltese aristocratic country residences. It represents an illustration of secondary or anthropogenic geodiversity. This paper scrutinises these ruins as a primary source in reconstructing the building’s architecture. The methodology involved on-site geographical surveying, including visual inspection and non-invasive tests, a geological survey of the local lithostratigraphy, and examination of notarial deeds and secondary sources to support findings about the building’s history as read from its ruins. An unmanned aerial vehicle was used to digitally record the parlous state of the architectural structure and karsten tubes were used to quantify the surface porosity of the limestone. The results are expressed from four perspectives. The anatomy of Casa Ippolito, as revealed in its ruins, provides a cross-section of its building history and shows two distinct phases in its construction. The tissue of Casa Ippolito—the building elements and materials—speaks of the knowledge of raw materials and their properties among the builders who worked on both phases. The architectural history of Casa Ippolito reveals how it supported its inhabitants’ wellbeing in terms of shelter, water and food. Finally, the ruins in their present state bring to the fore the site’s potential for cultural tourism. This case study aims to show that such ruins are not just geocultural remains of historical built fabric. They are open wounds in the built structure; they underpin the anatomy of the building and support insights into its former dynamics. Ruins offer an essay in material culture and building physics. Architectural ruins of masonry structures are anthropogenic discourse rendered in stone which facilitate not only the reconstruction of spaces but also places for human users; they are a statement on the wellbeing of humanity throughout history.


2021 ◽  
Vol 13 (2) ◽  
pp. 679
Author(s):  
Roya Aeinehvand ◽  
Amiraslan Darvish ◽  
Abdollah Baghaei Daemei ◽  
Shima Barati ◽  
Asma Jamali ◽  
...  

Today, renewable resources and the crucial role of passive strategies in energy efficiency in the building sector toward the sustainable development goals are more indispensable than ever. Natural ventilation has traditionally been considered as one of the most fundamental techniques to decrease energy usage by building dwellers and designers. The main purpose of the present study is to enhance the natural ventilation rates in an existing six-story residential building situated in the humid climate of Rasht during the summertime. On this basis, two types of ventilation systems, the Double-Skin Facade Twin Face System (DSF-TFS) and Single-Sided Wind Tower (SSWT), were simulated through DesignBuilder version 4.5. Then, two types of additional ventilation systems were proposed in order to accelerate the airflow, including four-sided as well as multi-opening wind towers. The wind foldable directions were at about 45 degrees (northwest to southeast). The simulation results show that SSWT could have a better performance than the aforementioned systems by about 38%. Therefore, the multi-opening system was able to enhance the ventilation rate by approximately 10% during the summertime.


Sign in / Sign up

Export Citation Format

Share Document