Influence of bisphosphonates on the production of pro-inflammatory cytokines by activated human articular chondrocytes

Cytokine ◽  
2005 ◽  
Vol 31 (4) ◽  
pp. 298-304 ◽  
Author(s):  
Jan F. Van Offel ◽  
Evelyne J. Dombrecht ◽  
Chris H. Bridts ◽  
Annemie J. Schuerwegh ◽  
Didier G. Ebo ◽  
...  
Cartilage ◽  
2021 ◽  
pp. 194760352110219
Author(s):  
Mauricio N. Ferrao Blanco ◽  
Yvonne M. Bastiaansen-Jenniskens ◽  
Mark G. Chambers ◽  
Andrew A. Pitsillides ◽  
Roberto Narcisi ◽  
...  

Objective In osteoarthritis, chondrocytes tend to acquire a hypertrophic phenotype, which contributes to the modification of the extracellular matrix, resulting in permanent cartilage changes. In mouse chondrocytes, pro-inflammatory macrophages and pro-inflammatory cytokines have been shown to stimulate hypertrophy via the activation of the nuclear factor kappa B (NF-κB) pathway. Whether or not this also occurs in human chondrocytes remains unclear. We therefore aimed to investigate whether hypertrophy-like responses in human cartilage are driven mainly by intrinsic inflammatory signaling or shaped by specific macrophage populations. Design Human articular chondrocytes were cultured with pro-inflammatory cytokines or medium conditioned by defined macrophage subsets. Furthermore, the effect of inhibition of NF-κB-dependent gene expression was evaluated using the NF-κB inhibitor SC-514. Hypertrophy was assessed by measuring the transcription level of alkaline phosphatase ( ALPL), type X collagen ( COL10A1), Indian hedgehog ( IHH), and runt-related transcription factor 2 ( RUNX2). Results The expression of hypertrophic genes was not promoted in human chondrocytes by pro-inflammatory cytokines neither pro-inflammatory M(IFNγ + TNFα) macrophages. Inhibition of the NF-κB-dependent gene expression did not affect human articular chondrocyte hypertrophy. However, tissue repair M(IL4) macrophages induced hypertrophy by promoting the expression of COL10A1, RUNX2, and IHH. Conclusion Intrinsic inflammatory signaling activation is not involved in the hypertrophic shift observed in human articular chondrocytes cultured in vitro. However, tissue repair macrophages may contribute to the onset of this detrimental phenotype in human osteoarthritic cartilage, given the effect observed in our experimental models.


Cartilage ◽  
2019 ◽  
pp. 194760351988938
Author(s):  
Christoph Bauer ◽  
Christoph Stotter ◽  
Vivek Jeyakumar ◽  
Eugenia Niculescu-Morzsa ◽  
Bojana Simlinger ◽  
...  

Objective Cobalt and chromium (CoCr) ions from metal implants are released into the joint due to biotribocorrosion, inducing apoptosis and altering gene expression in various cell types. Here, we asked whether CoCr ions concentration-dependently changed viability, transcriptional activity, and inflammatory response in human articular chondrocytes. Design Human articular chondrocytes were exposed to Co (1.02-16.33 ppm) and Cr (0.42-6.66 ppm) ions and cell viability and early/late apoptosis (annexin V and 7-AAD) were assessed in 2-dimensional cell cultures using the XTT assay and flow cytometry, respectively. Changes in chondrocyte morphology were assessed using transmitted light microscopy. The effects of CoCr ions on transcriptional activity of chondrocytes were evaluated by quantitative polymerase chain reaction (qPCR). The inflammatory responses were determined by measuring the levels of released pro-inflammatory cytokines (interleukin-1β [IL-1β], IL-6, IL-8, and tumor necrosis factor–α [TNF-α]). Results CoCr ions concentration-dependently reduced metabolic activity and induced early and late apoptosis after 24 hours in culture. After 72 hours, the majority of chondrocytes (>90%) were apoptotic at the highest concentrations of CoCr ions (16.33/6/66 ppm). SOX9 expression was concentration-dependently enhanced, whereas expression of COL2A1 linearly decreased after 24 hours. IL-8 release was enhanced proportionally to CoCr ions levels, whereas IL-1β, IL-6, and TNF-α levels were not affected by the treatments. Conclusions CoCr ions showed concentration- and time-dependent effects on articular chondrocytes. Fractions of apoptotic articular chondrocytes were proportional to CoCr ion concentrations. In addition, metabolic activity and expression of chondrocyte-specific genes were decreased by CoCr ions. Furthermore, exposure to CoCr ions caused a release of pro-inflammatory cytokines.


2002 ◽  
Vol 21 (5) ◽  
pp. 449-459 ◽  
Author(s):  
Beatrice Dozin ◽  
Mara Malpeli ◽  
Laura Camardella ◽  
Ranieri Cancedda ◽  
Antonello Pietrangelo

2020 ◽  
Vol 13 (12) ◽  
pp. 429
Author(s):  
Yunhui Min ◽  
Dahye Kim ◽  
Godagama Gamaarachchige Dinesh Suminda ◽  
Xiangyu Zhao ◽  
Mangeun Kim ◽  
...  

Estrogen-related receptors (ERRs) are the first identified orphan nuclear receptors. The ERR family consists of ERRα, ERRβ, and ERRγ, regulating diverse isoform-specific functions. We have reported the importance of ERRγ in osteoarthritis (OA) pathogenesis. However, therapeutic approaches with ERRγ against OA associated with inflammatory mechanisms remain limited. Herein, we examined the therapeutic potential of a small-molecule ERRγ inverse agonist, GSK5182 (4-hydroxytamoxifen analog), in OA, to assess the relationship between ERRγ expression and pro-inflammatory cytokines in mouse articular chondrocyte cultures. ERRγ expression increased following chondrocyte exposure to various pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. Pro-inflammatory cytokines dose-dependently increased ERRγ protein levels. In mouse articular chondrocytes, adenovirus-mediated ERRγ overexpression upregulated matrix metalloproteinase (MMP)-3 and MMP-13, which participate in cartilage destruction during OA. Adenovirus-mediated ERRγ overexpression in mouse knee joints or ERRγ transgenic mice resulted in OA. In mouse joint tissues, genetic ablation of Esrrg obscured experimental OA. These results indicate that ERRγ is involved in OA pathogenesis. In mouse articular chondrocytes, GSK5182 inhibited pro-inflammatory cytokine-induced catabolic factors. Consistent with the in vitro results, GSK5182 significantly reduced cartilage degeneration in ERRγ-overexpressing mice administered intra-articular Ad-Esrrg. Overall, the ERRγ inverse agonist GSK5182 represents a promising therapeutic small molecule for OA.


2009 ◽  
Vol 60 (11) ◽  
pp. 3303-3313 ◽  
Author(s):  
Ko Hashimoto ◽  
Richard O. C. Oreffo ◽  
Marc B. Gibson ◽  
Mary B. Goldring ◽  
Helmtrud I. Roach

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1051.1-1051
Author(s):  
M. Fernandez-Moreno ◽  
N. Larkins ◽  
A. Reynolds ◽  
T. Hermida Gómez ◽  
F. J. Blanco

Background:Disease modification is not yet possible for osteoarthritis (OA). Mitochondrial ROS and pro-inflammatory cytokines are involved in the pathogenesis of OA and are potential therapeutic targets. APPA, a combination of apocynin (AP) and paeonol (PA), has the potential capacity to modulate synthesis of pro-inflammatory stimuli.Objectives:To investigate the anti-inflammatory effect of APPA in human articular chondrocytes and cartilage.Methods:Tissue and chondrocytes from human OA cartilage were isolated. The effect of APPA on chondrocyte viability was analyzed using MTT. IL-1β 10 ng/mL and LPS 10 ng/mL were used as pro-inflammatory stimuli. ROS production was evaluated by flow cytometry using DCFH-DA and MitoSoxRed. The percentage of senescent cells was evaluated through the quantification of Fluorescein di-β-D-galactopyranoside (FDG) by flow cytometry. The effect of APPA on gene expression of pro-inflammatory cytokines (IL-8 and TNF-α) and enzymes degrading cartilage (MMP-13 and MMP-3) were analyzed in chondrocyte and cartilage by RT-PCR. Quantification of Toluidine Blue (TB) staining in cartilage was performed to evaluate proteoglycans content using software ImageJ/Fiji. Release of Glycosaminoglycan (GAGs) into the supernatant was quantified using BlyscanTM Glycosaminoglycan assay. Statistical analyses were performed with GraphPad Prism v6.Results:Chondrocytes, incubated in presence of APPA 10 µg/mL for 24 h had viability >85%, reduced cytoplasmic ROS (p=0.028) and mitochondrial anion superoxide production induced by LPS 10 ng/mL (p=0.057). Chondrocytes incubated in presence of APPA 10 µg/mL for 2 hours contained significantly fewer senescent cells (p=0.0079). APPA significantly reduced the gene expression induced by IL-1β 10 ng/mL in chondrocytes of IL-8, TNF-α, MMP-13 and MMP-3. Cartilage incubated with APPA 60 and 100 µg/mL for 48 h showed decreased the MMP-3 gene expression induced by IL-1β (p=0.021 and p<0.0001 respectively). Quantification of TB showed that APPA 60 and 100 µg/mL during 48h increased the proteoglycans in intermedial layer, which had been decreased through the incubation with IL-1β (p=0.0018 and p=0.018 respectively). Quantification of release GAGs into the supernatant decreased significantly when the cartilage explants were incubated for 48h in presence of APPA 100 µg/mL (p=0.028).Conclusion:APPA has a clear anti-inflammatory effect on human articular chondrocytes, and could reduce extracellular matrix degradation of cartilage. This could be mediated by the capacity to modulate ROS production and reduce senescence.Disclosure of Interests:Mercedes Fernandez-Moreno: None declared, Nicholas Larkins Shareholder of: I am a shareholder in AKL Research and Development Ltd, Alan Reynolds Shareholder of: I have share options in AKL Research and Development Ltd, Speakers bureau: I have not been a paid speaker for a pharma company - at least not since 2008 whichI think is outside the scope of this, Consultant of: The last time I was a paid consultant was in 2017 when I acted as a consultant for Avillion and Norgine, Employee of: I am also an employee of AKL Research and Development Ltd, Tamara Hermida Gómez: None declared, Francisco J. Blanco Speakers bureau: LillyPfizerSanofiGalapagos, Consultant of: LillyPfizerSanofiGalapagos, Grant/research support from: LillyMSDMerck SeronoPfizerPierre-FabraRocheSanofiServierUCBAbbvieAmgenBioibericaBristol MayerCelgeneCelltrionCellerixGrunenthalGebro PharmaAKL Research and Development Ltd


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1238 ◽  
Author(s):  
Jonas Urich ◽  
Magali Cucchiarini ◽  
Ana Rey-Rico

Osteoarthritis (OA) is a prevalent joint disease linked to the irreversible degradation of key extracellular cartilage matrix (ECM) components (proteoglycans, type-II collagen) by proteolytic enzymes due to an impaired tissue homeostasis, with the critical involvement of OA-associated pro-inflammatory cytokines (interleukin 1 beta, i.e., IL-1β, and tumor necrosis factor alpha, i.e., TNF-α). Gene therapy provides effective means to re-establish such degraded ECM compounds by rejuvenating the altered OA phenotype of the articular chondrocytes, the unique cell population ubiquitous in the articular cartilage. In particular, overexpression of the highly specialized SOX9 transcription factor via recombinant adeno-associated viral (rAAV) vectors has been reported for its ability to readjust the metabolic balance in OA, in particular via controlled rAAV delivery using polymeric micelles as carriers to prevent a possible vector neutralization by antibodies present in the joints of patients. As little is known on the challenging effects of such naturally occurring OA-associated pro-inflammatory cytokines on such rAAV/polymeric gene transfer, we explored the capacity of polyethylene oxide (PEO) and polypropylene oxide (PPO)-based polymeric micelles to deliver a candidate rAAV-FLAG-hsox9 construct in human OA chondrocytes in the presence of IL-1β and TNF-α. We report that effective, micelle-guided rAAV sox9 overexpression enhanced the deposition of ECM components and the levels of cell survival, while advantageously reversing the deleterious effects afforded by the OA cytokines on these processes. These findings highlight the potentiality of polymeric micelles as effective rAAV controlled delivery systems to counterbalance the specific contribution of major OA-associated inflammatory cytokines, supporting the concept of using such systems for the treatment for chronic inflammatory diseases like OA.


Sign in / Sign up

Export Citation Format

Share Document