Design of firm-pore superhydrophobic fibrous membrane for advancing the durability of membrane distillation

Desalination ◽  
2021 ◽  
Vol 519 ◽  
pp. 115185
Author(s):  
Chenghan Ji ◽  
Zhigao Zhu ◽  
Lingling Zhong ◽  
Weiming Zhang ◽  
Wei Wang
2020 ◽  
Vol 615 ◽  
pp. 118499 ◽  
Author(s):  
Zhigao Zhu ◽  
Lingling Zhong ◽  
Xuemei Chen ◽  
Wei Zheng ◽  
Jinlong Zuo ◽  
...  

Membranes ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 15 ◽  
Author(s):  
Mohamed R. Elmarghany ◽  
Ahmed H. El-Shazly ◽  
Saeid Rajabzadeh ◽  
Mohamed S. Salem ◽  
Mahmoud A. Shouman ◽  
...  

In this work, a novel triple-layer nanocomposite membrane prepared with polyethersulfone (PES)/carbon nanotubes (CNTs) as the primary bulk material and poly (vinylidene fluoride-co-hexafluoro propylene) (PcH)/CNTs as the outer and inner surfaces of the membrane by using electrospinning method is introduced. Modified PES with CNTs was chosen as the bulk material of the triple-layer membrane to obtain a high porosity membrane. Both the upper and lower surfaces of the triple-layer membrane were coated with PcH/CNTs using electrospinning to get a triple-layer membrane with high total porosity and noticeable surface hydrophobicity. Combining both characteristics, next to an acceptable bulk hydrophobicity, resulted in a compelling membrane for membrane distillation (MD) applications. The prepared membrane was utilized in a direct contact MD system, and its performance was evaluated in different salt solution concentrations, feed velocities and feed solution temperatures. The results of the prepared membrane in this study were compared to those reported in previously published papers. Based on the evaluated membrane performance, the triple-layer nanocomposite membrane can be considered as a potential alternative with reasonable cost, relative to other MD membranes.


2019 ◽  
Vol 696 ◽  
pp. 133883 ◽  
Author(s):  
Min Tang ◽  
Deyin Hou ◽  
Chunli Ding ◽  
Kunpeng Wang ◽  
Dewu Wang ◽  
...  

2019 ◽  
Vol 370 ◽  
pp. 1027-1038 ◽  
Author(s):  
Xiaozhi Ren ◽  
Jinxiu Li ◽  
Jiayi Li ◽  
Yuqi Jiang ◽  
Lan Li ◽  
...  

Author(s):  
Mukta Hardikar ◽  
Luisa A. Ikner ◽  
Varinia Felix ◽  
Luke K. Presson ◽  
Andrew B. Rabe ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1601
Author(s):  
Jorge Contreras-Martínez ◽  
Carmen García-Payo ◽  
Mohamed Khayet

As a consequence of the increase in reverse osmosis (RO) desalination plants, the number of discarded RO modules for 2020 was estimated to be 14.8 million annually. Currently, these discarded modules are disposed of in nearby landfills generating high volumes of waste. In order to extend their useful life, in this research study, we propose recycling and reusing the internal components of the discarded RO modules, membranes and spacers, in membrane engineering for membrane distillation (MD) technology. After passive cleaning with a sodium hypochlorite aqueous solution, these recycled components were reused as support for polyvinylidene fluoride nanofibrous membranes prepared by electrospinning technique. The prepared membranes were characterized by different techniques and, finally, tested in desalination of high saline solutions (brines) by direct contact membrane distillation (DCMD). The effect of the electrospinning time, which is the same as the thickness of the nanofibrous layer, was studied in order to optimize the permeate flux together with the salt rejection factor and to obtain robust membranes with stable DCMD desalination performance. When the recycled RO membrane or the permeate spacer were used as supports with 60 min electrospinning time, good permeate fluxes were achieved, 43.2 and 18.1 kg m−2 h−1, respectively; with very high salt rejection factors, greater than 99.99%. These results are reasonably competitive compared to other supported and unsupported MD nanofibrous membranes. In contrast, when using the feed spacer as support, inhomogeneous structures were observed on the electrospun nanofibrous layer due to the special characteristics of this spacer resulting in low salt rejection factors and mechanical properties of the electrospun nanofibrous membrane.


Sign in / Sign up

Export Citation Format

Share Document