Combining Cu7S4 ultrathin nanosheets and nanotubes for efficient and selective absorption of anionic dyes

Desalination ◽  
2022 ◽  
Vol 521 ◽  
pp. 115392
Author(s):  
Shengkai Liu ◽  
Shuang Zhou ◽  
Guo Dong Li ◽  
Cheng Wang ◽  
Carla Bittencourt ◽  
...  
2020 ◽  
Author(s):  
Sofia Alexandra Milheiro ◽  
Joana Gonçalves ◽  
Ricardo Lopes ◽  
Margarida Madureira ◽  
Lis Lobo ◽  
...  

<p><a>A small library of “half-sandwich” cyclopentadienylruthenium(II) compounds of general formula [(</a>η<sup>5</sup>-C<sub>5</sub>R<sub>5</sub>)Ru(PPh<sub>3</sub>)(N-N)][PF<sub>6</sub>], a scaffold hitherto unfeatured in the toolbox of antiplasmodials, was screened for activity against the blood stage of CQ-sensitive 3D7-GFP, CQ-resistant Dd2 and artemisinin-resistant IPC5202 <i>Plasmodium falciparum</i> strains, and the liver stage of <i>P. berghei</i>. The best performing compounds displayed dual-stage activity, with single-digit nM IC<sub>50</sub> values against blood stage malaria parasites, nM activity against liver stage parasites, and residual cytotoxicity against mammalian cells (HepG2, Huh7). Parasitic absorption/distribution of 7-nitrobenzoxadiazole-appended fluorescent compounds <b>Ru4</b> and <b>Ru5</b> was investigated by confocal fluorescence microscopy, revealing parasite-selective absorption in infected erythrocytes and nuclear accumulation of both compounds. The lead compound <b>Ru2</b> impaired asexual parasite differentiation, exhibiting fast parasiticidal activity against both ring and trophozoite stages of a synchronized <i>P. falciparum</i> 3D7 strain. These results point to cyclopentadienylruthenium(II) complexes as a highly promising chemotype for the development of dual-stage antiplasmodials.</p>


Cellulose ◽  
2021 ◽  
Author(s):  
Peixin Tang ◽  
Leilah-Marie E. Lockett ◽  
Mengxiao Zhang ◽  
Gang Sun

AbstractA chemical modification of cotton fabrics by 2-diethylaminoethyl chloride (DEAE-Cl) was achieved, and the resulted cotton fabrics demonstrated salt-free dyeing properties with anionic dyes. Nucleophilic property of hydroxyl groups in cotton cellulose was enhanced under alkaline conditions and could react with DEAE-Cl, a chemical possessing both nucleophilic and electrophilic sites. The monolayered DEAE-grafted cotton cellulose could further react with DEAE-Cl to form multiple cationic quaternary ammonium salts (denoted as DEAE@Cotton), which are highly interactive with anionic dye molecules. The strong electrostatic interactions between the DEAE@Cotton and the dyes eliminated the use of inorganic salts in cotton dyeing process. The chemical structure and property of DEAE@Cotton were characterized and compared with untreated cotton. The DEAE@Cotton can be dyed in a salt-free system, and the dye exhaustion was faster than the conventional dyeing method due to the robust electrostatic interactions of the fabrics with anionic dyes. The dyed fabrics demonstrated outstanding color fastness under repeated washing, light exposure, and crocking. The dye adsorption process on DEAE@Cotton follows Langmuir isotherm model (R2 = 0.9667). The mechanism of enhanced dyeability was experimentally proved by treating the fabric with other anionic dyes in a salt-free system, proving the process to be environmentally friendly and cost-effective. Graphic abstract


Author(s):  
Ning-Ning Cheng ◽  
Zi-Liang Li ◽  
Hong-Chao Lan ◽  
Wen-Long Xu ◽  
Wen-Jing Jiang ◽  
...  

2021 ◽  
Author(s):  
Madhvi Garg ◽  
Navneet Bhullar ◽  
Bharat Bajaj ◽  
Dhiraj Sud

The present manuscript reports the ultrasound radiation induced synthesis of grafted chitosan hydrogels (CAAT and CAAG) using terephthalaldehyde/glutaraldehyde as crosslinking agents and its application for removal of synthetic dyes from...


2021 ◽  
Author(s):  
Lifang Qi ◽  
Yao Le ◽  
Chao Wang ◽  
Rui Lei ◽  
Tian Wu

Self-assembling ultrathin active δ-MnO2 nanosheets and Mn3O4 octahedrons into hierarchical texture enhances room-temperature formaldehyde oxidation at a low-level of Pt.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4661
Author(s):  
Jayachamarajapura Pranesh Shubha ◽  
Haralahalli Shivappa Savitha ◽  
Syed Farooq Adil ◽  
Mujeeb Khan ◽  
Mohammad Rafe Hatshan ◽  
...  

Zinc oxide-ternary heterostructure Mn3O4/ZnO/Eu2O3 nanocomposites were successfully prepared via waste curd as fuel by a facile one-pot combustion procedure. The fabricated heterostructures were characterized utilizing XRD, UV–Visible, FT-IR, FE-SEM, HRTEM and EDX analysis. The photocatalytic degradation efficacy of the synthesized ternary nanocomposite was evaluated utilizing model organic pollutants of methylene blue (MB) and methyl orange (MO) in water as examples of cationic dyes and anionic dyes, respectively, under natural solar irradiation. The effect of various experimental factors, viz. the effect of a light source, catalyst dosage, irradiation time, pH of dye solution and dye concentration on the photodegradation activity, was systematically studied. The ternary Mn3O4/ZnO/Eu2O3 photocatalyst exhibited excellent MB and MO degradation activity of 98% and 96%, respectively, at 150 min under natural sunlight irradiation. Experiments further conclude that the fabricated nanocomposite exhibits pH-dependent photocatalytic efficacy, and for best results, concentrations of dye and catalysts have to be maintained in a specific range. The prepared photocatalysts are exemplary and could be employed for wastewater handling and several ecological applications.


Sign in / Sign up

Export Citation Format

Share Document