scholarly journals Modification of cotton fabrics with 2-diethylaminoethyl chloride for salt-free dyeing with anionic dyes

Cellulose ◽  
2021 ◽  
Author(s):  
Peixin Tang ◽  
Leilah-Marie E. Lockett ◽  
Mengxiao Zhang ◽  
Gang Sun

AbstractA chemical modification of cotton fabrics by 2-diethylaminoethyl chloride (DEAE-Cl) was achieved, and the resulted cotton fabrics demonstrated salt-free dyeing properties with anionic dyes. Nucleophilic property of hydroxyl groups in cotton cellulose was enhanced under alkaline conditions and could react with DEAE-Cl, a chemical possessing both nucleophilic and electrophilic sites. The monolayered DEAE-grafted cotton cellulose could further react with DEAE-Cl to form multiple cationic quaternary ammonium salts (denoted as DEAE@Cotton), which are highly interactive with anionic dye molecules. The strong electrostatic interactions between the DEAE@Cotton and the dyes eliminated the use of inorganic salts in cotton dyeing process. The chemical structure and property of DEAE@Cotton were characterized and compared with untreated cotton. The DEAE@Cotton can be dyed in a salt-free system, and the dye exhaustion was faster than the conventional dyeing method due to the robust electrostatic interactions of the fabrics with anionic dyes. The dyed fabrics demonstrated outstanding color fastness under repeated washing, light exposure, and crocking. The dye adsorption process on DEAE@Cotton follows Langmuir isotherm model (R2 = 0.9667). The mechanism of enhanced dyeability was experimentally proved by treating the fabric with other anionic dyes in a salt-free system, proving the process to be environmentally friendly and cost-effective. Graphic abstract

2017 ◽  
Vol 36 (3-4) ◽  
pp. 872-887 ◽  
Author(s):  
Luying Ma ◽  
Guihua Zhao ◽  
Yaoyao Fang ◽  
Wei Dai ◽  
Na Ma

Herein, we demonstrate a simple and cost-effective method to prepare the new hierarchically Ni-doped porous CaCO3 monoliths in a large scale by mineralizing finger citron residue templates with a calcium acetate precursor. The morphology, microstructure, and element composition of as-prepared adsorbents are characterized by Scanning Electron Microscope (SEM), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), and N2 adsorption, respectively. Adsorption performance of anionic dye Congo red was investigated in a batch experiment. The results showed that pseudo-second-order kinetic model and Langmuir adsorption isotherm matched well for the Congo red adsorption. Compared with previously reported adsorbents, due to positive and negative charge effect between Congo red and Ni, Ni-doped porous CaCO3 monoliths demonstrated a superior Congo red dye adsorption capability. The results of the present study substantiate that Ni-doped porous CaCO3 monoliths is a promising adsorbent for the removal of the anionic dyes from wastewater.


2011 ◽  
Vol 8 (s1) ◽  
pp. S335-S343 ◽  
Author(s):  
V. Dharmalingam ◽  
A. K. Ramasamy ◽  
V. Balasuramanian

Abstract: The roles played by four major functional groups (amine, carboxyl, azo, hydroxyl groups) in the biomass of castor seeds in adsorption of seven dyes were investigated. These functional groups in castor seeds were chemically modified individually to determine their contribution to the adsorption of ionic dyes. The dyes used were remazol red B, procino yellow, fast green FCF, brilliant cresyl blue, methylene blue, neutral red, red-141. It was found that hydroxyl group inhibited the adsorption of anionic dyes but it was major functional group in the adsorption of cationic dyes, hydroxyl group was important functional group in the adsorption of all seven dyes and the effect of methylation of amino group was not significant on the adsorption of seven dyes.


2020 ◽  
Vol 21 (18) ◽  
pp. 6531 ◽  
Author(s):  
Hua Han ◽  
Chang Liu ◽  
Jie Zhu ◽  
Fa-Xue Li ◽  
Xue-Li Wang ◽  
...  

Coating a cationic antibacterial layer on the surface of cotton fabric is an effective strategy to provide it with excellent antibacterial properties and to protect humans from bacterial cross-infection. However, washing with anionic detergent will inactivate the cationic antibacterial coating. Although this problem can be solved by increasing the amount of cationic antibacterial coating, excessive cationic antibacterial coating reduces the drapability of cotton fabric and affects the comfort of wearing it. In this study, a coordinated antibacterial coating strategy based on quaternary ammonium salt and a halogenated amine compound was designed. The results show that the antibacterial effect of the modified cotton fabric was significantly improved. In addition, after mechanically washing the fabric 50 times in the presence of anionic detergent, the antibacterial effect against Staphylococcus aureus and Escherichia coli was still more than 95%. Furthermore, the softness of the obtained cotton fabric showed little change compared with the untreated cotton fabric. This easy-to-implement and cost-effective approach, combined with the cationic contact and the release effect of antibacterial agents, can endow cotton textiles with durable antibacterial properties and excellent wearability.


2021 ◽  
Author(s):  
Hongzhi Zhao ◽  
Dezhen Wang ◽  
Kuanjun Fang ◽  
Kun Zhang ◽  
Ying Pan ◽  
...  

Abstract Cotton fibers have a high crystallinity, which makes a large number of reactive hydroxyl groups blocked and therefore affects the ink-jet printing performance of reactive dyes on cotton fabrics. In this work, the alkali treatment was employed to adjust the structure of cotton fibers. The crystallinity of treated cotton fibers reduced from 73.9–58.5%, and the breaking strength did not decrease compared with original cotton fiber. Thus, the accessible reactive hydroxyl groups and the wettability were enhanced for treated cotton fibers, which promoted the penetration of inks into the fibers. The optimal K/S value of 23.47 was achieved for treated cotton fabrics which was higher than that of untreated cotton fabrics (17.15). Meanwhile, the printed fabrics displayed good washing fastness, rubbing fastness and glossiness. This work provides an effective way for improving the utilization of dye solution and producing high-quality cotton fabric digital printing products.


2021 ◽  
pp. 004051752110661
Author(s):  
M Khairy ◽  
R Kamal ◽  
MA Mousa

Nanoparticle materials have received increasing attention in the functional modification of textiles. In this work, pure TiO2, Ag-doped TiO2, Fe-doped TiO2, and graphene oxide nanoparticles were used to impart the anti-bacterial and adsorptive properties of nanoparticles to cotton fabric. The treated fabric materials were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The obtained treated fabrics were used as adsorbents for the removal of methylene blue from aqueous solution. The functionalized cotton fabrics were tested for their anti-microbial capability against Escherichia coli, Bacillus cereus, and Candida albicans. All the functionalized fabrics have higher anti-microbial activity compared to untreated cotton, especially the fabrics containing silver and Fe-doped TiO2. The optimum conditions of the adsorption process are determined via the study of the effect of the initial concentration of dye, pH, and contact time on the removal efficiency. Langmuir, Freundlich, and Temkin isotherms are applied for the equilibrium adsorption data. GO-Cot and Ag-Ti@GO-Cot samples showed the highest adsorption removal activity. The linear correlation coefficient ( R2) showed that the Temkin model well fitted the data of adsorption in the GO-Cot sample. The analysis of experimental data with different kinetic models showed that the pseudo-second-order kinetic model well fitted the adsorption data better than the other kinetic models of the pseudo-first-order, Elovich, and intra-particle diffusion.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 310
Author(s):  
Dohyeon Han ◽  
Doohwan Lee

Fine control of morphology and exposed crystal facets of porous γ-Al2O3 is of significant importance in many application areas such as functional nanomaterials and heterogeneous catalysts. Herein, a morphology controlled in situ synthesis of Al@Al2O3 core–shell architecture consisting of an Al metal core and a porous γ-Al2O3 shell is explored based on interfacial hydrothermal reactions of an Al metal substrate in aqueous solutions of inorganic anions. It was found that the morphology and structure of boehmite (γ-AlOOH) nano-crystallites grown at the Al-metal/solution interface exhibit significant dependence on temperature, type of inorganic anions (Cl−, NO3−, and SO42−), and acid–base environment of the synthesis solution. Different extents of the electrostatic interactions between the protonated hydroxyl groups on (010) and (001) facets of γ-AlOOH and the inorganic anions (Cl−, NO3−, SO42−) appear to result in the preferential growth of γ-AlOOH toward specific crystallographic directions due to the selective capping of the facets by adsorption of the anions. It is hypothesized that the unique Al@Al2O3 core–shell architecture with controlled morphology and exposed crystal-facets of the γ-Al2O3 shell can provide significant intrinsic catalytic properties with enhanced heat and mass transport to heterogeneous catalysts for applications in many thermochemical reaction processes. The direct fabrication of γ-Al2O3 nano-crystallites from Al metal substrate with in-situ modulation of their morphologies and structures into 1D, 2D, and 3D nano-architectures explored in this work is unique and can offer significant opportunities over the conventional methods.


2021 ◽  
Vol 16 ◽  
pp. 155892502110034
Author(s):  
Xiongfang Luo ◽  
Pei Cheng ◽  
Wencong Wang ◽  
Jiajia Fu ◽  
Weidong Gao

This study establishes an eco-friendly anti-wrinkle treating process for cotton fabric. Sodium hydroxide-liquid ammonia pretreatment followed by 6% (w/w) PU100 adding citric acid pad-cure-dry finishing. In this process, citric acid (CA) was used as the fundamental crosslinking agent during finishing because it is a non-formaldehyde based, cost-effective and well wrinkle resistance agent. Environmental-friendly waterborne polyurethane (WPU) was used as an additive to add to the CA finishing solution. Six commercial WPUs were systematically investigated. Fabric properties like wrinkle resistance, tensile strength retention, whiteness, durable press, softness, and wettability were well investigated. Fourier transform infrared spectra and X-ray diffraction spectra were also measured and discussed before and after adding waterborne polyurethane. Tentative mechanism of the interaction among the WPU, CA, and modified cotton fabrics is provided. The effect of cotton fabric pretreatment on fabric performance was also investigated. After the eco-process’s treatment, the fabric wrinkle resistant angle was upgraded to 271 ± 7°, tensile strength retention was maintained at 66.77% ± 3.50% and CIE whiteness was elevated to 52.13 ± 3.21, which are much better than the traditional CA anti-wrinkle finishing based on mercerized cotton fabrics. This study provides useful information for textile researchers and engineers.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 919
Author(s):  
Abdalla Abdal-hay ◽  
H. Fouad ◽  
Basheer A. ALshammari ◽  
Khalil Abdelrazek Khalil

An innovative, biomimetic, green synthesis approach was exploited for the synthesis of humane and environmental friendly nanomaterials for biomedical applications. Ultrafine bonelike apatite (BAp) 2D plate-like structures were prepared using fenugreek seed extract during the biosynthesis wet-chemical precipitation route. The chemical analysis, morphology and structure of the prepared 2D nanoplates were characterized by inductively coupled plasma atomic emission spectroscopy (ICP-OES), electron microscopy (SEM and TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. A 2D plate-like nanostructure of BAp with an average width (length) of 12.67 ± 2 nm and thickness of 3.8 ± 1.2 nm was obtained. BAp 2D crystals were tuned by interaction with the fenugreek organic molecules during the fabrication process. In addition to Ca and P ions, bone mineral sources such as K, Mg, Na, SO4 and CO3 ions were incorporated into BAp nanoplates using fenugreek seed extract. The overall organic molecule concentration in the reaction process increased the effectiveness of hydroxyl groups as nucleation sites for BAp crystals. Accordingly, the size of the biosynthesized BAp plate-like structure was reduced to its lowest value. Biosynthesis BAp 2D plate-like nanocrystals showed good viability and higher growth of MC3T3 osteoblast-like structures than that of the control sample. BAp 2D nanoplates prepared by a facile, ecofriendly and cost-effective approach could be considered a favorable osteoconductive inorganic biomaterial for bone regeneration applications.


1969 ◽  
Vol 39 (7) ◽  
pp. 686-691 ◽  
Author(s):  
Earl J. Roberts ◽  
Stanley P. Rowland

Aminoethylated cotton cellulose (I) was prepared by the reaction of cotton fabric with sodium 2-aminoethyl sulfate in the presence of excess base at 125°C and was analyzed for structural components. d-Glucose, 0-(2-aminoethyl)-d-glucopyranoses (II), polyethylenimines, and ethanolamine were shown to be present in the hydrolyzate of I. The complexity of this cellulose derivative is attributed to the development of carbonyl groups in the cellulose during the reaction and to the subsequent reaction of these groups with amino groups in the substituents, in polyethylenimines, and ethanolamine. The distribution of nitrogen among the II's polyethylenimine, and ethanolamine is estimated to be in the ratio 0.5:0.4:0.1. Quantitative analyses for the ratio of mono-0-(2-aminoethyl) substituents in the 2–0-, 3–0-, and 6–0-positions of the d-glucopyranosyl units were complicated by reactions between the carbonyl function (at C-1) of d-glucose and the amino groups of the substituted glucoses. This ratio was determined to be 0.64:0.14:1.00 after conversion of the amino groups of I to hydroxyl groups by diazotization and analysis in terms of II


Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 670 ◽  
Author(s):  
You Lv ◽  
Baolin Xing ◽  
Mingkun Zheng ◽  
Guiyun Yi ◽  
Guangxu Huang ◽  
...  

A novel carboxymethyl cellulose (CMC)-supported graphene oxide aerogel (CGOA) was fabricated from a cost-effective and abundant bituminous coal by a mild hydrothermal process and freeze-drying treatment. Such an aerogel has cross-linked graphene oxide layers supported by CMC, and therefore, displays high mechanical strength while having ultra-low density (8.257 mg·cm−3). The CGOA has a 3D interconnected porous structure, beneficial graphene framework defects and abundant oxygen-containing functional groups, which offer favorable diffusion channels and effective adsorption sites for the transport and adsorption of dye molecules. The adsorption performance of rhodamine B by an optimized CGOA shows a maximum monolayer adsorption capacity of 312.50 mg·g−1, as determined by Langmuir isotherm parameters. This CGOA exhibited a better adsorption efficiency (99.99%) in alkaline solution, and satisfactory stability (90.60%) after three cycles. In addition, adsorption experiments on various dyes have revealed that CGOA have better adsorption capacities for cationic dyes than anionic dyes.


Sign in / Sign up

Export Citation Format

Share Document