Energy efficient vortex-enhanced water evaporation technology for concentrated brine management: Theory and process simulation evaluation

Desalination ◽  
2022 ◽  
Vol 522 ◽  
pp. 115427
Author(s):  
Leland M. Vane ◽  
Kelly Rock ◽  
Don Jordan
2021 ◽  
Author(s):  
Jaehoon Cha ◽  
Seongbin Ga ◽  
Seung-Joon LEE ◽  
Soomyung Nam ◽  
Youn-Sang Bae ◽  
...  

<p> In this work, we proposed multi-scale screening, which employs both molecular and process-level models, to identify high-performing MOFs for energy-efficient separation of SF$_6$ from SF$_6$ and N$_2$ mixture. Grand canonical Monte Carlo (GCMC) simulations were combined with ideal adsorption process simulation to computationally screen 14,000 metal-organic frameworks (MOFs) for adsorptive separation of SF$_6$ \/ N$_2$. More than 150 high-performing MOFs were identified based on the results from GCMC simulations at the pressure and vacuum swing conditions, and subsequently evaluated using the ideal adsorption process simulation. High-performing MOFs selected for the VSA conditions are able to achieve the 90 \% target purity level of SF$_6$ but none of the selected MOFs for PSA conditions could. Cascade PSA configuration was proposed and adopted to improve the purity level of the separated SF$_6$. Cascade PSA configuration was also adopted to improve the purity. In the pump efficiency scenarios of 80, 20, and 10 \%, the VSA and cascade PSA cases were compared, which concluded 10 \% scenario prefers the PSA case whereas the VSA case is favored in the others. Top-performing MOFs identified from the multi-scale computational approach were found to be able to produce 90\% purity SF$_6$ with 0.10 - 0.4 and 0.5 - 1.4 MJ per kg of SF$_6$ for VSA and PSA, respectively.<br></p>


2021 ◽  
Author(s):  
Tawseef Ahmad Wani ◽  
Parul Garg ◽  
Ashok Bera

The solar-driven water evaporation technique to produce clean water has shown enormous potential towards an energy-efficient solution for global freshwater scarcity. Designing a cost-effective and efficient solar vapor generator (SVG)...


2020 ◽  
Vol 229 (17-18) ◽  
pp. 2741-2755
Author(s):  
Ana C. Trindade ◽  
Miguel Carreto ◽  
Geir Helgesen ◽  
Kenneth D. Knudsen ◽  
Florian Puchtler ◽  
...  

AbstractCellulose nano crystals (CNCs) are promising materials for energy efficient buildings related to the control of reflectivity and heat absorption/reflection of light. In this sense it is important to improve CNCs films fire retardant properties, which can be achieved by adding clays. Cellulose nanocrystals (CNCs) and nanolayers obtained from Sodium Fluorohectorite (NaFh) synthetic clay are both known to form liquid crystalline phases in aqueous suspensions. CNCs form cholesteric phases, which structure is preserved after water evaporation, while dry NaFh nanolayers aligned films collapse. In this initial work, it is shown that CNCs are compatible with NaFh clay. We demonstrate that the liquid crystalline phase of CNCs in water is not destroyed by the presence of NaFh nanolayers. The NaFh nanolayers act as planar anchoring surfaces to the cellulose nanorods and, after evaporation of the water coloured films are obtained. The precursor solutions and the photonic films were investigated by Describe several techniques.


2021 ◽  
Author(s):  
Jaehoon Cha ◽  
Seongbin Ga ◽  
Seung-Joon LEE ◽  
Soomyung Nam ◽  
Youn-Sang Bae ◽  
...  

<p> In this work, we proposed multi-scale screening, which employs both molecular and process-level models, to identify high-performing MOFs for energy-efficient separation of SF6 from SF<sub>6</sub> and N<sub>2</sub> mixture. Grand canonical Monte Carlo (GCMC) simulations were combined with ideal adsorption process simulation to computationally screen 14,000 metal-organic frameworks (MOFs) for adsorptive separation of SF6/N<sub>2</sub>. More than 150 high-performing MOFs were identified based on the results from GCMC simulations at the pressure and vacuum swing conditions, and subsequently evaluated using the ideal adsorption process simulation. High-performing MOFs selected for the VSA conditions are able to achieve the 90% target purity level of SF6 but none of the selected MOFs for PSA conditions could. Cascade PSA configuration was proposed and adopted to improve the purity level of the separated SF6. Cascade PSA configuration was also adopted to improve the purity. In the pump efficiency scenarios of 80, 20, and 10%, the VSA and cascade PSA cases were compared, which concluded 10% scenario prefers the PSA case whereas the VSA case is favored in the others. Top-performing MOFs identified from the multi-scale computational approach were found to be able to produce 90% purity SF<sub>6</sub> with 0.10 - 0.4 and 0.5 - 1.4 MJ per kg of SF6 for VSA and PSA, respectively.</p>


2019 ◽  
Vol 295 ◽  
pp. 01002
Author(s):  
Pavel Vitliemov ◽  
Daniel Bratanov ◽  
Milko Marinov

In this paper is presented an approach to design distributed knowledge-based software environment for energy efficient cities. All data gathered by the smart tools at domestic or public facilities can be accessed by the platform. Energy savings can be achieved as result from an optimized mix of both condition-based and preventive energy losses services that followed an online analysis of collected data. Algorithms and methods for an intelligent interpretation of the collected data can be developed within the platform in order to monitor the energy consumption process. Simulation of different scenarios forecasting the consumer’s further behaviour in energy consumption will be the result of that intelligent interpretation.


2020 ◽  
Vol 2020 ◽  
pp. 1-24
Author(s):  
Sujatha Abaranji ◽  
Karthik Panchabikesan ◽  
Velraj Ramalingam

Building cooling is achieved by the extensive use of air conditioners. These mechanically driven devices provide thermal comfort by deteriorating the environment with increased energy consumption. To alleviate environmental degradation, the need for energy-efficient and eco-friendly systems for building cooling becomes essential. Evaporative cooling, a typical passive cooling technique, could meet the energy demand and global climatic issues. In conventional direct evaporative cooling, the sensible cooling of air is achieved by continuous water circulation over the cooling pad. Despite its simple operation, the problem of the pad material and water stagnation in the sump limits its usage. Moreover, the continuous pump operation increases the electrical energy consumption. In the present work, a porous material is used as the water storage medium eliminating the pump and sump. An experimental investigation is performed on the developed setup, and experiments are conducted for three different RH conditions (low, medium, and high) to assess the porous material’s ability as a cooling medium. Cooling capacity, effectiveness, and water evaporation rate are determined to evaluate the direct evaporative cooling system’s performance. The material that replaces the pump and sump is vermicompost due to its excellent water retention characteristics. There is no necessity to change material each time. However, the vermicompost is regenerated at the end of the experiment using a solar dryer. The passing of hot air over the vermicompost also avoids mould spores’ transmission, if any, present through the air. The results show that vermicompost produces an average temperature drop of 9.5°C during low RH conditions. Besides, vermicompost helps with the energy savings of 21.7% by eliminating the pump. Hence, vermicompost could be an alternate energy-efficient material to replace the pad-pump-sump of the conventional evaporative cooling system. Further, if this direct evaporative cooling system is integrated with solar-assisted drying of vermicompost, it is possible to provide a clean and sustainable indoor environment. This system could pave the way for year-round thermal management of building cooling applications with environmental safety.


2021 ◽  
Author(s):  
Jaehoon Cha ◽  
Seongbin Ga ◽  
Seung-Joon LEE ◽  
Soomyung Nam ◽  
Youn-Sang Bae ◽  
...  

<p> In this work, we proposed multi-scale screening, which employs both molecular and process-level models, to identify high-performing MOFs for energy-efficient separation of SF$_6$ from SF$_6$ and N$_2$ mixture. Grand canonical Monte Carlo (GCMC) simulations were combined with ideal adsorption process simulation to computationally screen 14,000 metal-organic frameworks (MOFs) for adsorptive separation of SF$_6$ \/ N$_2$. More than 150 high-performing MOFs were identified based on the results from GCMC simulations at the pressure and vacuum swing conditions, and subsequently evaluated using the ideal adsorption process simulation. High-performing MOFs selected for the VSA conditions are able to achieve the 90 \% target purity level of SF$_6$ but none of the selected MOFs for PSA conditions could. Cascade PSA configuration was proposed and adopted to improve the purity level of the separated SF$_6$. Cascade PSA configuration was also adopted to improve the purity. In the pump efficiency scenarios of 80, 20, and 10 \%, the VSA and cascade PSA cases were compared, which concluded 10 \% scenario prefers the PSA case whereas the VSA case is favored in the others. Top-performing MOFs identified from the multi-scale computational approach were found to be able to produce 90\% purity SF$_6$ with 0.10 - 0.4 and 0.5 - 1.4 MJ per kg of SF$_6$ for VSA and PSA, respectively.<br></p>


Sign in / Sign up

Export Citation Format

Share Document