Epigallocatechin-3-O-gallate (EGCG) attenuates FFAs-induced peripheral insulin resistance through AMPK pathway and insulin signaling pathway in vivo

2011 ◽  
Vol 93 (2) ◽  
pp. 205-214 ◽  
Author(s):  
Yan Li ◽  
Sheng Zhao ◽  
Wei Zhang ◽  
Peng Zhao ◽  
Bing He ◽  
...  
2014 ◽  
Vol 54 (1) ◽  
pp. 25-37 ◽  
Author(s):  
Jun Zhou ◽  
Qilong Wang ◽  
Ye Ding ◽  
Ming-Hui Zou

We recently reported that genetic deletion of myeloperoxidase (MPO) alleviates obesity-related insulin resistance in mice in vivo. How MPO impairs insulin sensitivity in adipocytes is poorly characterized. As hypochlorous acid (HOCl) is a principal oxidant product generated by MPO, we evaluated the effects of HOCl on insulin signaling in adipocytes differentiated from 3T3-L1 cells. Exposure of 3T3-L1 adipocytes to exogenous HOCl (200 μmol/l) attenuated insulin-stimulated 2-deoxyglucose uptake, GLUT4 translocation, and insulin signals, including tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) and phosphorylation of Akt. Furthermore, treatment with HOCl induced phosphorylation of IRS1 at serine 307, inhibitor κB kinase (IKK), c-Jun NH2-terminal kinase (JNK), and phosphorylation of PKCθ (PKCθ). In addition, genetic and pharmacological inhibition of IKK and JNK abolished serine phosphorylation of IRS1 and impairment of insulin signaling by HOCl. Furthermore, knockdown of PKCθ using siRNA transfection suppressed phosphorylation of IKK and JNK and consequently attenuated the HOCl-impaired insulin signaling pathway. Moreover, activation of PKCθ by peroxynitrite was accompanied by increased phosphorylation of IKK, JNK, and IRS1-serine 307. In contrast, ONOO− inhibitors abolished HOCl-induced phosphorylation of PKCθ, IKK, JNK, and IRS1-serine 307, as well as insulin resistance. Finally, high-fat diet (HFD)-induced insulin resistance was associated with enhanced phosphorylation of PKCθ, IKK, JNK, and IRS1 at serine 307 in white adipose tissues from WT mice, all of which were not found in Mpo knockout mice fed HFDs. We conclude that HOCl impairs insulin signaling pathway by increasing ONOO− mediated phosphorylation of PKCθ, resulting in phosphorylation of IKK/JNK and consequent serine phosphorylation of IRS1 in adipocytes.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Ansarullah ◽  
Selvaraj Jayaraman ◽  
Anandwardhan A. Hardikar ◽  
A. V. Ramachandran

Oreocnide integrifolia(OI) leaves are used as folklore medicine by the people of northeast India to alleviate diabetic symptoms. Preliminary studies revealed hypoglycemic and hypolipidemic potentials of the aqueous leaf extract. The present study was carried out to evaluate whether the OI extract induces insulin secretionin vivoandin vitroand also whether it is mediated through the insulin-signaling pathway. The experimental set-up consisted of three groups of C57BL/6J mice strain: (i) control animals fed with standard laboratory diet, (ii) diabetic animals fed with a high-fat diet for 24 weeks and (iii) extract-supplemented animals fed with 3% OI extract along with high-fat diet for 24 weeks. OI-extract supplementation lowered adiposity and plasma glucose and insulin levels. Immunoblot analysis of IRS-1, Akt and Glut-4 protein expressions in muscles of extract-supplemented animals revealed that glucoregulation was mediated through the insulin-signaling pathway. Moreover, immunostaining of pancreas revealed increased insulin immunopositive cells in OI-extract-treated animals. In addition, the insulin secretogogue ability of the OI extract was demonstrated when challenged with high glucose concentration using isolated pancreatic isletsin vitro. Overall, the present study demonstrates the possible mechanism of glucoregulation of OI extract suggestive of its therapeutic potential for the management of diabetes mellitus.


Nutrition ◽  
2015 ◽  
Vol 31 (5) ◽  
pp. 733-739 ◽  
Author(s):  
Ze-Qiang Ren ◽  
Peng-Bo Zhang ◽  
Xiu-Zhong Zhang ◽  
Shou-Kun Chen ◽  
Hong Zhang ◽  
...  

2018 ◽  
Vol 9 (1) ◽  
pp. 397-406 ◽  
Author(s):  
Zhou Yang ◽  
Fan Wu ◽  
Yanming He ◽  
Qiang Zhang ◽  
Yuan Zhang ◽  
...  

A schematic diagram showing the IRS1-GLUT4 insulin signaling pathway influenced by PTP1B and FYGL in L6 cells.


2021 ◽  
Vol 50 (Supplement_1) ◽  
Author(s):  
Yu-xiang Yan ◽  
Ya-Ke Lu ◽  
Xi Chu ◽  
Yue Sun ◽  
Jing Dong

Abstract Background The underlying molecular mechanism of type 2 diabetes (T2D) and insulin resistance is that abnormalities occur in the complex insulin signaling pathway. Circular RNAs (circRNAs) are involved in the development of diseases by regulating gene expression and become promising novel biomarkers for diseases. This study screened and validated the insulin signaling pathway-related circulating circRNAs, which are associated with T2D. Methods Based on circRNA microarray, candidate circRNAs involved in the insulin PI3K/Akt signaling pathway were selected and validated by RT-qPCR. The association between circRNAs and T2D and their clinical significance were further assessed by logistic regression model, correlation analysis and ROC curve in a large cohort. The miRNA targets of validated circRNAs was verified by dual-luciferase reporter assay. Results A total of 370 upregulated circRNAs and 180 downregulated circRNAs were differentially expressed between new T2D cases and controls. hsa_circ_0063425, hsa_circ_0056891 and hsa_circ_0104123 were selected as candidate circRNAs for validation. Low expressed circ_0063425 and hsa_circ_0056891 were independent predictors of T2D, impaired fasting glucose (IFG) and insulin resistance. The two-circRNA panel had a high diagnostic accuracy for discriminating T2D and IFG from healthy controls. miR-19a-3p and miR-1-3p were identified as the miRNA targets of hsa_circ_0063425 and hsa_circ_0056891, respectively. Significantly positive correlations were found between the expression levels of AKT and hsa_circ_0063425, PI3K and hsa_circ_0056891, in the total sample and subgroups stratified by glucose levels. Conclusion hsa_circ_0063425 and hsa_circ_0056891 are valuable circulating biomarkers for early detection of T2D, which may be involved in regulation of PI3K/AKT signaling. Key messages Insulin signaling pathway-related circulating circRNAs was identification as novel biomarkers of type 2 diabetes. Keywords circRNA; type 2 diabetes; insulin signaling; biomarker.


Sign in / Sign up

Export Citation Format

Share Document