Rehybridization analysis of C atoms of Cu/Diamond and Ni/Diamond interfaces under vertical pressure

2021 ◽  
pp. 108661
Author(s):  
Yuan Niu ◽  
Xinghua Zhu ◽  
Yuanpu Xu ◽  
Zhibin Lu ◽  
Guangan Zhang
Keyword(s):  
Author(s):  
Arshia Taeb ◽  
Phillip S.K. Ooi

When subjected to ambient daily temperature fluctuations, a 109.5 ft-long geosynthetic reinforced soil integrated bridge system (GRS-IBS) was observed to undergo cyclic straining of the superstructure. The upper and lower reaches of the superstructure experienced the highest and lowest strain fluctuation, respectively. These non-uniform strains impose not only axial loading of the superstructure but also bending. Pure axial loading in a horizontal superstructure will cause the footings to slide. However, bending in the superstructure will cause the footings to rotate thereby inducing cyclic fluctuations of the vertical pressure beneath the footing and also lateral pressure behind the end walls. Measured vertical footing pressure closest to the stream experienced the greatest daily pressure fluctuation (≈ 2,500–3,000 psf), while that nearest the end wall experienced the least. The toe pressure fluctuations seem rather large. That these large vertical pressure fluctuations are observed in a tropical climate like Hawaii when no other GRS-IBS in temperate regions has reported the same (or perhaps higher fluctuation) is indeed surprising. The larger these pressures are, the greater the likelihood of inducing cyclic-induced deformations of the GRS abutment. A finite element analysis of the same GRS-IBS was performed by applying an equivalent temperature and gradient to the superstructure over the coldest and hottest periods of a day to see if the field measured values of pressures are reasonable and verifiable, which indeed they were. This methodology is novel in the sense that the effects of axial load and bending of the superstructure are simulated using measured strains rather than measured temperatures.


1912 ◽  
Vol 49 (1) ◽  
pp. 26-44
Author(s):  
J. Y. Buchanan

The instrument being closed, its true weight is constant.Let it be assumed that our experiments are actually made in vacuo, at the sea-level in lat. 45°. In these conditions the standard gram exerts a vertical pressure of 1 gram (true).We weigh the hydrometer and find its weight to be W grams. We now float it in distilled water contained in a suitable cylinder. In the construction of the hydrometer the internal load has been so adjusted that, when immersed in distilled water of the standard temperature T, which is to remain unaltered during the whole of the experiments, the surface of the water shall cut the stem in some line C, near its junction with the body of the instrument. Then the weight of the water displaced by the hydrometer is exactly W grams.


Author(s):  
Bethanie A. Parker ◽  
Rodney P. McAffee ◽  
Arun J. Valsangkar

An induced trench installation was instrumented to monitor earth pressures and settlements during construction. Some of the unique features of this case study are as follows: (a) both contact and earth pressure cells were used; (b) part of the culvert is under a new embankment and part was installed in a wide trench within an existing embankment; (c) a large stockpile was temporarily placed over the induced trench; and (d) the compressible material was placed in two stages. The maximum vertical pressure measured in the field at the crown of the culvert was 0.24 times the overburden pressure. The maximum horizontal pressure measured on the side of the culvert at the springline was 0.45 times the overburden pressure. The column of soil directly above the compressible zone settled approximately 40% more than did the adjacent fill. The field results at the crown and springline compared reasonably with those observed with numerical modeling. However, the overall pressure distribution on the pipe was expected to be nonuniform, the average vertical pressure calculated by using numerical analysis on top of the culvert over its full width was 0.61 times the overburden pressure, and the average horizontal pressure calculated on the side of the culvert over its full height was 0.44 times the overburden pressure. When the full pressure distribution on the pipe is considered, the recommended design loads from the Marston–Spangler theory slightly underpredict the maximum loads, and the vertical loads control the design.


1994 ◽  
Vol 37 (5) ◽  
pp. 1613-1619 ◽  
Author(s):  
C. V. Schwab ◽  
I. J. Ross ◽  
G. M. White ◽  
D. G. Colliver

2021 ◽  
Vol 8 (2) ◽  
pp. 63-72
Author(s):  
Amam Fachrur Rozie ◽  
D.N Adnyana

Keselamatan dan keamanan dalam penggunaan bejana tekan sangat penting dan hal utama dalam penggunaan bejana tekan, terlebih lagi jika bejana tekan tersebut sudah melewati umur desain nya. Penelitian ini bertujuan untuk menilai kelayakan kondisi terkini dari suatu bejana tekan vertikal (vertical pressure vessel) yang telah beroperasi sejak tahun 1970 tetapi berhenti beroperasi pada tahun 2011. Pendekatan penilaian pada bejana tekan vertikal ini berbasis pada metode penilaian korosi dan risiko secara kualitatif. Selain itu juga dipergunakan metode-metode lain dalam aspek penilaian nya seperti visual inspeksi, laju korosi (corrosion rate), Non-Destructive Examination (NDE), software calculation dan analisa risiko kualitatif (qualitative risk analysis). Dari hasil observasi dan inspeksi di dapat tekanan desain (design pressure) adalah 7 kg/cm2, Temperatur desain (design temperature) adalah 61°C dengan material konstruksi adalah SA-283 Gr. C dan standard & code yang dipergunakan adalah ASME Sect. VIII Div. 1 dan API 510 serta beberapa standard & code lainnya. Dari hasil kajian dan kalkulasi di lapangan, maka didapat faktor penyebab kerusakan yang kemungkinan terjadi adalah atmospheric corrosion & uniform corrosion dengan nilai laju korosi adalah sebesar 0,127mm/yr dan tingkat risiko dari bejana tekan vertikal ini masuk dalam kategori 2D yang artinya adalah medium-high dengan maksimal umur pakai sampai usia 27 tahun untuk top head dan 24 tahun dan bottom head serta 23 tahun untuk shell. Sehingga dapat disimpulkan bahwa bejana tekan ini masih aman dan layak dipergunakan dengan batasan-batasan di atas.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Zheming Zhu ◽  
Weiting Gao ◽  
Duanying Wan ◽  
Meng Wang ◽  
Yun Shu

To study the characteristics of rock fracture in deep underground under blast loads, some numerical models were established in AUTODYN code. Weibull distribution was used to characterize the inhomogeneity of rock, and a linear equation of state was applied to describe the relation of pressure and volume of granite elements. A new stress initialization method based on explicit dynamic calculation was developed to get an accurate stress distribution near the borehole. Two types of in situ stress conditions were considered. The effect of heterogeneous characteristics of material on blast-induced granite fracture was investigated. The difference between 2D models and 3D models was discussed. Based on the numerical results, it can be concluded that the increase of the magnitude of initial pressure can change the mechanism of shear failure near the borehole and suppress radial cracks propagation. When initial lateral pressure is invariable, with initial vertical pressure rising, radial cracks along the acting direction of vertical pressure will be promoted, and radial cracks in other directions will be prevented. Heterogeneous characteristics of material have an obvious influence on the shear failure zones around the borehole.


2020 ◽  
Vol 117 ◽  
pp. 103260
Author(s):  
Hang Zhou ◽  
Hanlong Liu ◽  
Xueyuan Li ◽  
Xuanming Ding

Sign in / Sign up

Export Citation Format

Share Document