scholarly journals Data analysis for characterization of IG110 and A3 by X-Ray diffraction and Raman spectroscopy

Data in Brief ◽  
2020 ◽  
Vol 32 ◽  
pp. 106193
Author(s):  
Huali Wu ◽  
Ruchi Gakhar ◽  
Allen Chen ◽  
Zhou Zhou ◽  
Raluca O. Scarlat
Author(s):  
E. López-Honorato ◽  
P. J. Meadows ◽  
J. Tan ◽  
Y. Xiang ◽  
P. Xiao

In this work we have deposited silicon carbide (SiC) at 1300°C with the addition of small amounts of propylene. The use of propylene and high concentrations of methyltrichlorosilane (9 vol %) allowed the deposition of superhard SiC coatings (42 GPa). The superhard SiC could result from the presence of a SiC–C solid solution, undetectable by X-ray diffraction but visible by Raman spectroscopy. Another sample obtained by the use of 50 vol % Argon, also showed the formation of SiC with good properties. The use of a flat substrate together with the particles showed the importance of carrying out the analysis on actual particles rather than in flat substrates. We show that it is possible to characterize the anisotropy of pyrolytic carbon by Raman spectroscopy.


2020 ◽  
Vol 98 (5) ◽  
pp. 457-464
Author(s):  
Woo Sik Yoo ◽  
Kitaek Kang ◽  
Toshikazu Ishigaki ◽  
Jung Gon Kim ◽  
Noriyuki Hasuike ◽  
...  

1996 ◽  
Vol 10 (23) ◽  
pp. 1159-1159
Author(s):  
THOMAS PREETHI CICILY ◽  
K. MANOJ KUMAR ◽  
NAYAR V. UNNIKRISHANAN ◽  
V. VIDYALAL ◽  
C.P.G. VALLABHAN

2012 ◽  
Vol 27 (2) ◽  
pp. 131-136
Author(s):  
Bozidar Cekic ◽  
Valentin Ivanovski ◽  
Aleksandar Djordjevic ◽  
Velimir Aleksic ◽  
Zorica Tomic ◽  
...  

The paper addresses the issue of health risk associated with the presence of chrysotile in the soil type ranker formed on massive serpentines occurring in the area of Bubanj Potok, a settlement located in the southern Belgrade environs, Serbia. Characterization of the ranker soil was conducted by scanning electron microscopy, X-ray diffraction, micro-Raman spectroscopy and transmission 57Fe M?ssbauer spectroscopy. Scanning electron microscopy figures showed regular shaped smectite (montmorillonite) particles, aggregates of chlorite, and elongated sheets of serpentines minerals antigorite. X-ray diffraction analysis confirmed the presence of detrital mineral quartz polymorph as well as minor amounts of other mineral species. Micro-Raman spectroscopy identified the presence of dominant minerals, such as montmorillonite, kaolinite, muscovite, gypsum, calcite, albite, amphiboles (hornblende/kaersutite) and orthoclase. Important polymorph silica modifications of quartz, olivine (forsterite), pyroxene (enstatite/ferrosilite, diopside/hedenbergite), and serpentine (antigorite/lizardite/chrysotile) were identified.


2012 ◽  
Vol 1475 ◽  
Author(s):  
Daniel J. Gregg ◽  
Yingjie Zhang ◽  
Zhaoming Zhang ◽  
Inna Karatchevtseva ◽  
Mark G. Blackford ◽  
...  

ABSTRACTA series of uranium-containing gadolinium zirconate samples have been fabricated at 1723 K in air. X-ray diffraction and Raman spectroscopy have confirmed pyrochlore or defect fluorite structures, while diffuse reflectance, X-ray absorption near edge structure and X-ray photoelectron spectroscopies indicate a predominantly U6+ oxidation state, even when Ca2+ was added to charge balance for U4+. The results demonstrate the potential of gadolinium zirconates as host materials for actinides.


2014 ◽  
Vol 5 ◽  
pp. 1760-1766 ◽  
Author(s):  
Wojciech Kempiński ◽  
Szymon Łoś ◽  
Mateusz Kempiński ◽  
Damian Markowski

The review of four experimental methods: X-ray diffraction, Raman spectroscopy, electron paramagnetic resonance and four-point electrical conductivity measurements is presented to characterize carbon nanoparticles. Two types of carbon nanoparticle systems are discussed: one comprising the powder of individual carbon nanoparticles and the second as a structurally interconnected nanoparticle matrix in the form of a fiber. X-ray diffraction and Raman spectroscopy reveal the atomic structure of the carbon nanoparticles and allow for observation of the changes in the quasi-graphitic ordering induced by ultrasonic irradiation and with the so-called quasi-high pressure effect under adsorption conditions. Structural changes have strong influence on the electronic properties, especially the localization of charge carriers within the nanoparticles, which can be observed with the EPR technique. This in turn can be well-correlated with the four-point electrical conductivity measurements which directly show the character of the charge carrier transport within the examined structures.


Sign in / Sign up

Export Citation Format

Share Document