Spheroids of granulosa cells provide an in vitro model for programmed cell death coupled to steroidogenesis

2009 ◽  
Vol 77 (1) ◽  
pp. 60-69 ◽  
Author(s):  
Katja Hummitzsch ◽  
Albert M. Ricken ◽  
Daniel Kloß ◽  
Sabine Erdmann ◽  
Marcin S. Nowicki ◽  
...  
1994 ◽  
Vol 28 (4) ◽  
pp. 327-344 ◽  
Author(s):  
Claire M. Payne ◽  
Lewis Glasser ◽  
Marc E. Tischler ◽  
Deborah Wyckoff ◽  
Douglas Cromey ◽  
...  

1996 ◽  
Vol 24 (4) ◽  
pp. 581-587
Author(s):  
Cristiana Zanetti ◽  
Arrnalaura Stammati ◽  
Orazio Sapora ◽  
Flavia Zucco

The aim of this study was to investigate the endpoints related to cell death, either necrosis or apoptosis, induced by four chemicals in the promyelocytic leukemia cell line, HL-60. Cell morphology, DNA fragmentation, cytofluorimetric analysis and oxygen consumption were used to classify the type of cell death observed. In our analysis, we found that not all the selected parameters reproduced the differences observed in the cell death caused by the four chemicals tested. As cell death is a very complex phenomenon, several factors should be taken into account (cell type, exposure time and chemical concentration), if chemicals are to be classified according to differences in the mechanisms more directly involved in cell death.


Author(s):  
Mathieu Vinken ◽  
Michaël Maes ◽  
Sara Crespo Yanguas ◽  
Joost Willebrords ◽  
Tamara Vanhaecke ◽  
...  

2009 ◽  
Vol 37 (2) ◽  
pp. 209-218 ◽  
Author(s):  
Mathieu Vinken ◽  
Elke Decrock ◽  
Elke De Vuyst ◽  
Luc Leybaert ◽  
Tamara Vanhaecke ◽  
...  

This study was set up to critically evaluate a commonly-used in vitro model of hepatocellular apoptotic cell death, in which freshly isolated hepatocytes, cultured in a monolayer configuration, are exposed to a combination of Fas ligand and cycloheximide for six hours. A set of well-acknowledged cell death markers was addressed: a) cell morphology was studied by light microscopy; b) apoptotic and necrotic cell populations were quantified by in situ staining with Annexin-V, Hoechst 33342 and propidium iodide (PI); c) apoptotic and necrotic activities were monitored by probing caspase 3-like activity and measuring the extracellular leakage of lactate dehydrogenase (LDH), respectively; and d) the expression of apoptosis regulators was investigated by immunoblotting. The initiation of apoptosis was evidenced by the activation of caspase 8 and caspase 9, and increased Annexin-V reactivity. Progression through the apoptotic process was confirmed by the activation of caspase 3 and Bid, the enhanced expression of Bax, and the occurrence of nuclear fragmentation. Late transition to a necrotic appearance was demonstrated by an increased number of PI-positive cells and augmented extracellular release of LDH. Thus, the in vitro model allows the study of the entire course of Fas-mediated hepatocellular apoptotic cell death, which is not possible in vivo. This experimental system can serve a broad range of in vitro pharmaco-toxicological purposes, thereby directly assisting in the reduction of animal experimentation.


2010 ◽  
Vol 470 (2) ◽  
pp. 130-133 ◽  
Author(s):  
Alba Agudo-López ◽  
Begoña G. Miguel ◽  
Inmaculada Fernández ◽  
Ana M. Martínez

2020 ◽  
Vol 21 (8) ◽  
pp. 2943 ◽  
Author(s):  
Agata Grazia D’Amico ◽  
Grazia Maugeri ◽  
Salvatore Saccone ◽  
Concetta Federico ◽  
Sebastiano Cavallaro ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of complex etiology leading to motor neuron degeneration. Many gene alterations cause this pathology, including mutation in Cu, Zn superoxide dismutase (SOD1), which leads to its gain of function. Mutant SOD1 proteins are prone to aberrant misfolding and create aggregates that impair autophagy. The hypoxic stress is strictly linked to the disease progression since it induces uncontrolled autophagy activation and the consequent high rates of cell death. Previously, we showed that pituitary adenylate cyclase-activating polypeptide (PACAP) exerts neurotrophic activity in cultured mSOD1 motor neurons exposed to serum deprivation. To date, no studies have examined whether the protective effect of PACAP on mSOD1 cells exposed to hypoxic insult is mediated through the regulation of the autophagy process. In the present study, we used the neuroblastoma-spinal cord-34 (NSC-34) cell line, stably expressing human wild type or mutant SOD1 G93A, to represent a well characterized in vitro model of a familial form of ALS. These cells were exposed to 100-µM desferrioxamine mesylate salt for 24h, to mimic the hypoxic stress affecting motor neurons during the disease progression. Our results showed that PACAP treatment significantly reduced cell death and hypoxia-induced mSOD1 accumulation by modulating the autophagy process in G93A motor neurons, as revealed by the decreased LC3II and the increased p62 levels, two autophagy indicators. These results were also confirmed by evaluating the vacuole formation detected through light chain 3 (LC3) immunofluorescence. Furthermore, the PACAP effects on autophagy seem to be mediated through the activation of the MAPK/ERK signaling pathway. Overall, our data demonstrated that PACAP exerts an ameliorative effect on the mSOD1 motor neuron viability by modulating a hypoxia-induced autophagy process through activation of MAPK/ERK signaling cascade.


Sign in / Sign up

Export Citation Format

Share Document