Development of a novel orally active inverse agonist of estrogen-related receptor gamma (ERRγ), KH-NDTC as an enhancer for sodium iodide symporter: Its pharmacological effects in anaplastic thyroid cancer (ATC) in vitro and in vivo

2019 ◽  
Vol 34 (1) ◽  
pp. S34
Author(s):  
Yong Hyun Jeon ◽  
Seon Hee Choi ◽  
Sang Kyoon Kim
2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Chien-Chih Ke ◽  
Ya-Ju Hsieh ◽  
Luen Hwu ◽  
Fu-Hui Wang ◽  
Fu-Du Chen ◽  
...  

Anaplastic thyroid carcinoma (ATC) is one of the most deadly cancers. With intensive multimodalities of treatment, the survival remains low. ATC is not sensitive to131I therapy due to loss of sodium iodide symporter (NIS) gene expression. We have previously generated a stable human NIS-expressing ATC cell line, ARO, and the ability of iodide accumulation was restored. To make NIS-mediated gene therapy more applicable, this study aimed to establish a lentiviral system for transferring hNIS gene to cells and to evaluate the efficacy of in vitro and in vivo radioiodide accumulation for imaging and therapy. Lentivirus containing hNIS cDNA were produced to transduce ARO cells which do not concentrate iodide. Gene expression, cell function, radioiodide imaging and treatment were evaluated in vitro and in vivo. Results showed that the transduced cells were restored to express hNIS and accumulated higher amount of radioiodide than parental cells. Therapeutic dose of131I effectively inhibited the tumor growth derived from transduced cells as compared to saline-treated mice. Our results suggest that the lentiviral system efficiently transferred and expressed hNIS gene in ATC cells. The transduced cells showed a promising result of tumor imaging and therapy.


2019 ◽  
Vol 25 (16) ◽  
pp. 5069-5081 ◽  
Author(s):  
Thoudam Debraj Singh ◽  
Jaeyoung Song ◽  
Jina Kim ◽  
Jungwook Chin ◽  
Hyun Dong Ji ◽  
...  

2011 ◽  
Vol 210 (2) ◽  
pp. 157-163 ◽  
Author(s):  
Vicki E Smith ◽  
Jayne A Franklyn ◽  
Christopher J McCabe

Pituitary tumor-transforming gene (PTTG)-binding factor (PBF; PTTG1IP) was initially identified through its interaction with the human securin, PTTG. Like PTTG, PBF is upregulated in multiple endocrine tumours including thyroid cancer. PBF is believed to induce the translocation of PTTG into the cell nucleus where it can drive tumourigenesis via a number of different mechanisms. However, an independent transforming ability has been demonstrated both in vitro and in vivo, suggesting that PBF is itself a proto-oncogene. Studied in only a limited number of publications to date, PBF is emerging as a protein with a growing repertoire of roles. Recent data suggest that PBF possesses a complex multifunctionality in an increasing number of tumour settings. For example, PBF is upregulated by oestrogen and mediates oestrogen-stimulated cell invasion in breast cancer cells. In addition to a possible role in the induction of thyroid tumourigenesis, PBF overexpression in thyroid cancers inhibits iodide uptake. PBF has been shown to repress sodium iodide symporter (NIS) activity by transcriptional regulation of NIS expression through the human NIS upstream enhancer and further inhibits iodide uptake via a post-translational mechanism of NIS governing subcellular localisation. This review discusses the current data describing PBF expression and function in thyroid cancer and highlights PBF as a novel target for improving radioiodine uptake and thus prognosis in thyroid cancer.


Head & Neck ◽  
2020 ◽  
Vol 42 (12) ◽  
pp. 3678-3684
Author(s):  
Soo Young Kim ◽  
Seok‐Mo Kim ◽  
Hojin Chang ◽  
Hang‐Seok Chang ◽  
Cheong Soo Park ◽  
...  

2020 ◽  
Vol 295 (31) ◽  
pp. 10726-10740
Author(s):  
Hongwei Gao ◽  
Peirong Bai ◽  
Lin Xiao ◽  
Mengjia Shen ◽  
Qiuxiao Yu ◽  
...  

Mediator complex subunit 16 (MED16) is a component of the mediator complex and functions as a coactivator in transcriptional events at almost all RNA polymerase II–dependent genes. In this study, we report that the expression of MED16 is markedly decreased in papillary thyroid cancer (PTC) tumors compared with normal thyroid tissues. In vitro, MED16 overexpression in PTC cells significantly inhibited cell migration, enhanced sodium/iodide symporter expression and iodine uptake, and decreased resistance to radioactive 131I (RAI). Conversely, PTC cells in which MED16 had been further knocked down (MED16KD) exhibited enhanced cell migration, epithelial–mesenchymal transition, and RAI resistance, accompanied by decreased sodium/iodide symporter levels. Moreover, cell signaling through transforming growth factor β (TGF-β) was highly activated after the MED16 knockdown. Similar results were obtained in MED12KD PTC cells, and a co-immunoprecipitation experiment verified interactions between MED16 and MED12 and between MED16 and TGF-βR2. Of note, the application of LY2157299, a potent inhibitor of TGF-β signaling, significantly attenuated MED16KD-induced RAI resistance both in vitro and in vivo. In conclusion, our findings indicate that MED16 reduction in PTC contributes to tumor progression and RAI resistance via the activation of the TGF-β pathway.


Surgery ◽  
2020 ◽  
Vol 167 (1) ◽  
pp. 56-63 ◽  
Author(s):  
Timothy M. Ullmann ◽  
Heng Liang ◽  
Maureen D. Moore ◽  
Isra Al-Jamed ◽  
Katherine D. Gray ◽  
...  

Thyroid ◽  
2000 ◽  
Vol 10 (11) ◽  
pp. 939-943 ◽  
Author(s):  
Jan W.A. Smit ◽  
Janny P. Schröder-van der Elst ◽  
Marcel Karperien ◽  
Ivo Que ◽  
Gabri van der Pluijm ◽  
...  

2021 ◽  
Author(s):  
Yu-Ling Lu ◽  
Yu-Tung Huang ◽  
Ming-Hsien Wu ◽  
Ting-Chao Chou ◽  
Richard J Wong ◽  
...  

Wee1 is a kinase that regulates the G2/M progression by inhibition of CDK1, which is critical for ensuring DNA damage repair before initiation of mitotic entry. Targeting Wee1 may be a potential strategy in the treatment of anaplastic thyroid cancer, a rare but lethal disease. The therapeutic effects of adavosertib, a Wee1 inhibitor for anaplastic thyroid cancer was evaluated in this study. Adavosertib inhibited cell growth in three anaplastic thyroid cancer cell lines in a dose-dependent manner. Cell cycle analysis revealed cells were accumulated in the G2/M phase. Adavosertib induced caspase-3 activity and led to apoptosis. Adavosertib monotherapy showed significant retardation of the growth of two anaplastic thyroid cancer tumor models. The combination of adavosertib with dabrafenib and trametinib revealed strong synergism in vitro and demonstrated robust suppression of tumor growth in vivo in anaplastic thyroid cancer xenograft models with BRAFV600E mutation. The combination of adavosertib with either sorafenib or lenvatinib also demonstrated synergism in vitro and had strong inhibition of tumor growth in vivo in an anaplastic thyroid cancer xenograft model. No appreciable toxicity appeared in mice treated with either single agent or combination treatment. Our findings suggest adavosertib holds the promise for the treatment of patients with anaplastic thyroid cancer.


Sign in / Sign up

Export Citation Format

Share Document