scholarly journals Climate change-driven coastal erosion modelling in temperate sandy beaches: Methods and uncertainty treatment

2020 ◽  
Vol 202 ◽  
pp. 103110 ◽  
Author(s):  
A. Toimil ◽  
P. Camus ◽  
I.J. Losada ◽  
G. Le Cozannet ◽  
R.J. Nicholls ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Patrick L. Barnard ◽  
Jenifer E. Dugan ◽  
Henry M. Page ◽  
Nathan J. Wood ◽  
Juliette A. Finzi Hart ◽  
...  

AbstractAs the climate evolves over the next century, the interaction of accelerating sea level rise (SLR) and storms, combined with confining development and infrastructure, will place greater stresses on physical, ecological, and human systems along the ocean-land margin. Many of these valued coastal systems could reach “tipping points,” at which hazard exposure substantially increases and threatens the present-day form, function, and viability of communities, infrastructure, and ecosystems. Determining the timing and nature of these tipping points is essential for effective climate adaptation planning. Here we present a multidisciplinary case study from Santa Barbara, California (USA), to identify potential climate change-related tipping points for various coastal systems. This study integrates numerical and statistical models of the climate, ocean water levels, beach and cliff evolution, and two soft sediment ecosystems, sandy beaches and tidal wetlands. We find that tipping points for beaches and wetlands could be reached with just 0.25 m or less of SLR (~ 2050), with > 50% subsequent habitat loss that would degrade overall biodiversity and ecosystem function. In contrast, the largest projected changes in socioeconomic exposure to flooding for five communities in this region are not anticipated until SLR exceeds 0.75 m for daily flooding and 1.5 m for storm-driven flooding (~ 2100 or later). These changes are less acute relative to community totals and do not qualify as tipping points given the adaptive capacity of communities. Nonetheless, the natural and human built systems are interconnected such that the loss of natural system function could negatively impact the quality of life of residents and disrupt the local economy, resulting in indirect socioeconomic impacts long before built infrastructure is directly impacted by flooding.


2014 ◽  
Vol 70 ◽  
pp. 395-400 ◽  
Author(s):  
Giovanni De Falco ◽  
Francesca Budillon ◽  
Alessandro Conforti ◽  
Sandro De Muro ◽  
Gabriella Di Martino ◽  
...  

2020 ◽  
Vol 8 (9) ◽  
pp. 715
Author(s):  
Kazunori Nakajima ◽  
Naoki Sakamoto ◽  
Keiko Udo ◽  
Yuriko Takeda ◽  
Eiji Ohno ◽  
...  

To measure economic effects of changes in environmental quality caused by climate change in Japan, we estimate beach loss damage costs in Japan and in each prefecture and evaluate the economic effectiveness of hypothetical adaptation measures to restore sandy beaches. For analyses, we use a computable general equilibrium model (CGE) that integrates a utility function with environmental quality factors as an independent variable derived from a recreation demand function in a travel cost method (TCM). We use future projections of beach loss rates in 2081–2100 based on ensemble-mean regional sea-level rise (SLR) for four Representative Concentration Pathway (RCPs) scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5). The main findings of our study are presented as follows. (1) In 2081–2100, beach loss damage costs were estimated respectively as 398.54 million USD per year for RCP2.6, 468.96 (m.USD/year) for RCP4.5, 494.09 (m.USD/year) for RCP6.0, and 654.63 (m.USD/year) for RCP8.5. (2) For all RCPs, six prefectures for which the cost–benefit ratio exceeds 1.0 were Kanagawa, Osaka, Hyogo, Hiroshima, Saga, and Kumamoto. Our hypothetical adaptation measure of an artificial beach enhancement is expected to be quite effective as a public works project in these prefectures.


2020 ◽  
Vol 35 (3) ◽  
pp. 468-497
Author(s):  
Clive Schofield ◽  
Suzanne Lalonde

Abstract This article addresses both the physical impacts and international legal issues arising from two interlinked stressors on Arctic coastlines: sea level rise and coastal erosion. Key aspects of the legal regime governing the baselines from which coastal States calculate the outer limits of their maritime zones are reviewed and a synopsis of the practice among the Arctic littoral States is provided. The article then turns to a discussion of the practical and international legal responses available to deal with the present and future challenge of rising seas and retreating coasts. The concluding section offers with some reflections on the way forward for a region experiencing some of the most devastating impacts of climate change.


2020 ◽  
Author(s):  
Rosanne Martyr-Koller ◽  
Tabea Lissner ◽  
Carl-Friedrich Schleussner

<p>Climate impacts increase with higher warming and evidence is mounting that impacts increase strongly above 1.5°C. Therefore, adaptation needs also rise substantially at higher warming levels. Further<strong>, </strong>limits to adaptation will be reached above 1.5°C and loss and damage will be inferred. Coastal Nature-based Solutions (NbS) have arisen as popular adaptation options, particularly for coastal developing economies and Small Island Developing States (SIDS), because of their lower overall costs compared to traditional grey infrastructure approaches such as seawalls and levees; their economic co-benefits through positive effects on sectors such as tourism and fisheries; and a broader desire to shift toward so-called blue economies. Two NbS of particular interest for coastal protection are: 1) coral reefs, which reduce coastal erosion and flooding through wave attenuation; and 2) mangroves, which provide protection from storms, tsunamis and coastal erosion. Although there is international enthusiasm to implement these solutions, there is limited understanding of the future viability of these ecosystems, particularly in their capacities as coastal adaptation service providers, in a warmer world.</p><p>In this presentation, we highlight how long and with how much coverage coral and mangrove ecosystems can provide coastal protection services for future climate scenarios, using air temperature and sea level rise as climate change indicators. A mathematical model for each ecosystem is developed, based on the physical parameters necessary for the sustainability of these ecosystems. We investigate the protective capabilities of each ecosystem under warming and sea level rise scenarios compatible with: below 1.5°C warming; below 2°C warming; warming based on current global commitments to carbon emissions reductions (3-3.5°C); and with no carbon mitigation (6°C). Results show what temperature and sea level rise values beyond which these ecosystems can no longer provide coastal protective services. These results have also been framed in a temporal window to show when these services may not be feasible, beyond which more costly adaptation measures and/or loss and damage may be incurred.</p>


2016 ◽  
Vol 114 (2) ◽  
pp. E122-E131 ◽  
Author(s):  
April M. Melvin ◽  
Peter Larsen ◽  
Brent Boehlert ◽  
James E. Neumann ◽  
Paul Chinowsky ◽  
...  

Climate change in the circumpolar region is causing dramatic environmental change that is increasing the vulnerability of infrastructure. We quantified the economic impacts of climate change on Alaska public infrastructure under relatively high and low climate forcing scenarios [representative concentration pathway 8.5 (RCP8.5) and RCP4.5] using an infrastructure model modified to account for unique climate impacts at northern latitudes, including near-surface permafrost thaw. Additionally, we evaluated how proactive adaptation influenced economic impacts on select infrastructure types and developed first-order estimates of potential land losses associated with coastal erosion and lengthening of the coastal ice-free season for 12 communities. Cumulative estimated expenses from climate-related damage to infrastructure without adaptation measures (hereafter damages) from 2015 to 2099 totaled $5.5 billion (2015 dollars, 3% discount) for RCP8.5 and $4.2 billion for RCP4.5, suggesting that reducing greenhouse gas emissions could lessen damages by $1.3 billion this century. The distribution of damages varied across the state, with the largest damages projected for the interior and southcentral Alaska. The largest source of damages was road flooding caused by increased precipitation followed by damages to buildings associated with near-surface permafrost thaw. Smaller damages were observed for airports, railroads, and pipelines. Proactive adaptation reduced total projected cumulative expenditures to $2.9 billion for RCP8.5 and $2.3 billion for RCP4.5. For road flooding, adaptation provided an annual savings of 80–100% across four study eras. For nearly all infrastructure types and time periods evaluated, damages and adaptation costs were larger for RCP8.5 than RCP4.5. Estimated coastal erosion losses were also larger for RCP8.5.


2021 ◽  
Author(s):  
Katy Wiltshire ◽  
Miriam Glendell ◽  
Toby Waine ◽  
Robert Grabowski ◽  
Barry Thornton ◽  
...  

<p>Quantifying organic carbon (OC) levels and the processes altering them is key in unlocking soils potential as a mediator of climate change through sequestration of atmospheric CO<sub>2</sub>. In areas of high soil erosion increased fluxes of OC across the terrestrial-aquatic interface are likely and understanding these fluxes is crucial in integrating lateral OC fluxes within the carbon cycle. For this study of a small UK catchment, OC mapping and Revised Universal Soil Loss Equation (RUSLE) based erosion modelling provided estimates of proportional soil OC loss coming from each land use. Sediment fingerprinting using <em>n</em>-alkane biomarkers and a Bayesian unmixing model provided a comparison of streambed OC proportions by land use to assess which processes were dominating OC input to streams. Results showed that RUSLE-based soil OC loss proportions exhibited disconnect with sediment fingerprinting OC composition and the river corridor and riparian environment were key zones in regulating terrestrial to aquatic fluxes of OC.</p>


Author(s):  
Roberto Bedini ◽  
Paolo Colantoni ◽  
Christine Pergent-Martini

From 1988 to the present the Institute of Marine Biology and Ecology of Piombino has studied the marine environmental situation of the Gulf of Follonica (Italy), in collaboration with the Universities of Siena, Pisa, Urbino, Sassari, Corte (FR) and the CNR of Pisa. In recent years erosion has drastically changed the sandy beaches mainly as a consequence of the constant retreat of the P. oceanica meadows whose possible causes have been studied. Also in the Gulf of Baratti the methods adopted for the defense of the beach have been inadequate.


Sign in / Sign up

Export Citation Format

Share Document