scholarly journals SARS-CoV-2 activates lung epithelial cell proinflammatory signaling and leads to immune dysregulation in COVID-19 patients

EBioMedicine ◽  
2021 ◽  
Vol 70 ◽  
pp. 103500
Author(s):  
Huarong Chen ◽  
Weixin Liu ◽  
Yifei Wang ◽  
Dabin Liu ◽  
Liuyang Zhao ◽  
...  
1992 ◽  
Vol 267 (21) ◽  
pp. 14703-14712
Author(s):  
B.R. Stripp ◽  
P.L. Sawaya ◽  
D.S. Luse ◽  
K.A. Wikenheiser ◽  
S.E. Wert ◽  
...  

1994 ◽  
Vol 267 (5) ◽  
pp. L489-L497 ◽  
Author(s):  
S. W. Glasser ◽  
T. R. Korfhagen ◽  
S. E. Wert ◽  
J. A. Whitsett

This review summarizes progress in the application of transgenic mouse technology to the study of lung development and disease. Since advances in molecular genetics have greatly facilitated the isolation of cDNA and genes, our ability to readily assess roles of both normal and mutated genes in transgenic mouse in vivo represents a major advance, bridging molecular biology and whole animal physiology. Strategies have been developed in which lung epithelial cell promoter elements are used to drive normal or mutated genes into specific subsets of respiratory epithelial cells in the lungs of developing and mature transgenic mice. These mice have been used to elucidate the cis-acting elements controlling lung epithelial cell gene expression, to discern the role of specific polypeptides in lung morphogenesis and tumorigenesis, and to create animal models of pulmonary disease. The ability to mutate genes at their precise chromosomal locations through gene targeting in embryonic stem cells has lead to the production of animal models of lung diseases such as cystic fibrosis. Both gene insertion and gene targeting create permanent mouse lines that pass the modified gene to their progeny, providing animals for the study of the pathogenesis and treatment of pulmonary disorders.


2016 ◽  
Vol 54 (5) ◽  
pp. 697-706 ◽  
Author(s):  
Haranatha R. Potteti ◽  
Subbiah Rajasekaran ◽  
Senthilkumar B. Rajamohan ◽  
Chandramohan R. Tamatam ◽  
Narsa M. Reddy ◽  
...  

2021 ◽  
Vol 11 (7) ◽  
pp. 1333-1338
Author(s):  
Han Han ◽  
Zhenxi Yu ◽  
Mei Feng

Regulated in Development and DNA Damage Response 1 (REDD1) knockdown can reduce the endoplasmic reticulum stress response in liver injury. However, its role on lipopolysaccharide (LPS)-induced acute lung injury (ALI) has not been explored. This study aimed to evaluate the effect of REDD1 on lung epithelial cells induced by LPS. Rt-qPCR and Western blot were used to detect REDD1 expression in 16HBE cells induced by LPS. The interfering REDD1 plasmid was constructed, and CCK8 was used to detect the effect of interference with REDD1 on LPS-induced lung epithelial cell activity. The expression of inflammatory factors was detected by ELISA and the apoptotic level was detected by TUNEL staining. String database was used to predict the combination of REDD1 and EP300 in lung epithelial cells, which was verified by CoIP experiment. An overexpressed plasmid of EP300 was constructed to detect the effects of EP300 on inflammatory factors and apoptosis in REDD1 lung epithelial cells. LPS-induced increased REDD1 expression in lung epithelial cells. Interference with REDD1 inhibits LPS-induced lung epithelial cell activity injury and inflammatory factor expression and inhibits LPS-induced lung epithelial cell apoptosis. After interference with REDD1, the expression of EP300 in LPS-induced lung epithelial cells was inhibited, and the overexpression of EP300 was reversed to promote the production of inflammatory factors and apoptosis. In conclusion, these results demonstrate that REDD1 knockdown alleviates LPS-induced acute lung injury.


Sign in / Sign up

Export Citation Format

Share Document