scholarly journals Combined influence of compression ratio and exhaust gas recirculation on the diverse characteristics of the diesel engine fueled with novel palmyra biodiesel blend

2022 ◽  
pp. 100185
Author(s):  
Geddam Prasada Rao ◽  
Lankapalli Sathya Vara Prasad
2018 ◽  
Vol 29 (3) ◽  
pp. 372-391 ◽  
Author(s):  
M Krishnamoorthi ◽  
R Malayalamurthi

The threat of fossil fuel depletion and augmented environmental pollution caused by diesel fleets can be curbed by adopting suitable fuel and engine modifications. In the present work, effects of engine speed (r/min), injection timing, injection pressure and compression ratio on performance and emission characteristics of a compression ignition engine were investigated. The ternary test fuel of 65% diesel + 25% bael oil + 10% diethyl ether has been used, where the tests have been conducted at different charge inlet temperature and exhaust gas recirculation. All the experiments were conducted at the trade-off engine load that is 75% engine load. When the diesel engine operating with 320 K charge inlet temperature, brake thermal efficiency has been improved to 28.6%. Meanwhile reduced emission levels of carbon monoxide (0.025%) and hydrocarbon (12.3 ppm) were observed during the engine operation with 320 K charge inlet temperature and compression ratio of 18:1. The oxides of nitrogen have been reduced to 226 ppm at 16:1 compression ratio with 30% exhaust gas recirculation mode.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Prabhakara Rao Ganji ◽  
Rajesh Khana Raju Vysyaraju ◽  
Srinivasa Rao Surapaneni ◽  
B. Karuna Kumar

AbstractIn recent years, engine emissions have been one of the important problems which are of great concern. Hence, there is a growing need to develop engines with reduced emission. In the present study, Variable Compression Ratio diesel engine model has been validated by comparing the simulation results with the experimental. The study is aimed at analyzing the effect of compression ratio, exhaust gas recirculation, fuel injection pressure and start of injection on engine performance and emission characteristics. Using composite desirability technique, the engine parameters have been optimized to achieve lower NOx, soot and ISFC. The optimum combination has been observed at Compression ratio 17.52, Start of injection −30.1 °aTDC, Fuel injection pressure 736.06 bar and Exhaust gas recirculation 28.29%. ISFC, NOx and soot are reduced by 2.37%, 29.11% and 83.81% respectively. Higher Target Fuel Distribution Index indicates the improved mixture homogeneity for the optimized parameters.


Sign in / Sign up

Export Citation Format

Share Document