Inhibitory effect of triclosan and nonylphenol on respiration rates and ammonia removal in activated sludge systems

2008 ◽  
Vol 70 (2) ◽  
pp. 199-206 ◽  
Author(s):  
Athanasios S. Stasinakis ◽  
Daniel Mamais ◽  
Nikolaos S. Thomaidis ◽  
Elena Danika ◽  
Georgia Gatidou ◽  
...  
1996 ◽  
Vol 34 (3-4) ◽  
pp. 117-126 ◽  
Author(s):  
Henri Spanjers ◽  
Peter Vanrolleghem ◽  
Gustaf Olsson ◽  
Peter Dold

This paper summarises progress of the IAWQ Task Group developing the Scientific and Technical Report (STR) on respirometry in control of the activated sludge process. The significance of respirometry in activated sludge systems is explained from a biochemical background. A classification is proposed which includes all respirometric measuring principles described in the literature. The different respiration rates that can be measured are reviewed and some variables that can be deduced from respiration rate are discussed. Some elementary control concepts will be provided that are necessary for the evaluation of respirometry-based control strategies. Finally, a number of respirometry-based control strategies will be classified and discussed.


1986 ◽  
Vol 18 (6) ◽  
pp. 115-122 ◽  
Author(s):  
Mogens Henze

Respiration rates for nitrate and oxygen are compared. Raw wastewaters vary much in these rates and the same holds for activated sludge systems. The denitrifying activity may range from 0-80 per cent of the oxygen activity. It is important to take these variations into consideration, when modelling complex activated sludge processes. Of similar importance are the amounts of active biomass in raw wastewater, as these amounts can exceed those produced in the activated sludge plant itself, and thus significantly can influence the overall composition of the active biomass.


1977 ◽  
Vol 12 (1) ◽  
pp. 191-212
Author(s):  
B. Volesky ◽  
Q. Samak ◽  
P. Waller

Abstract Review of the available results appearing in the recent literature is presented focusing particularly upon the effects of metallic ions such as Cr, Cu, Zn, Cd, Hg, V, Zn, Ni and Co. Some original data involving the effects of Na are presented and discussed. Development of parameters used in evaluating the influence of toxic or inhibitory species on the mixed microbial population of an activated sludge system is of crucial importance and different techniques employed such as BOD-COD-TOC-removal rates, Oxygen Uptake Rate, and others are discussed, showing relative inadequacy of currently applied assays. From the data available, certain trends can be discerned. There is a definite threshold concentration for each metallic ion, depending on the organic load of the feed. In the order of increasing toxicity to activated sludge systems reflected in lower BOD removals the following metals have been listed as inhibiting factors at concentrations starting from 1 ppm applied on a continuous basis: hexavalent chromium, cobalt, zinc, cadmium, trivalent chromium, copper and nickel. Metals in combination have not been reported to exhibit any significantly different effects as compared to those observed with individually introduced metallic ions. Tolerance of some activated sludge systems to shock loadings by various inorganic ions and metals is reviewed. The conclusions are of particular importance for estimating the performance of biox systems handling industrial effluents which are likely to contain toxic components of inorganic or metallic nature.


1991 ◽  
Vol 24 (7) ◽  
pp. 59-64 ◽  
Author(s):  
R. W. Szetela

Steady-state models are presented to describe the wastewater treatment process in two activated sludge systems. One of these makes use of a single complete-mix reactor; the other one involves two complete-mix reactors arranged in series. The in-series system is equivalent to what is known as the “two-phase” activated sludge, a concept which is now being launched throughout Poland in conjunction with the PROMLECZ technology under implementation. Analysis of the mathematical models has revealed the following: (1) treatment efficiency, excess sludge production, energy consumption, and the degree of sludge stabilization are identical in the two systems; (2) there exists a technological equivalence of “two-phase” sludge with “single-phase” sludge; (3) the “two-phase” system has no technological advantage over the “single-phase” system.


1989 ◽  
Vol 21 (6-7) ◽  
pp. 609-619 ◽  
Author(s):  
Y.-J. Shao ◽  
David Jenkins

Laboratory and pilot plant experiments on anoxic selector activated sludge systems were conducted on two wastewaters in some cases supplemented with nitrate, acetate or glucose. To prevent bulking sufficient anoxic selector detention time and nitrate levels must be available to reduce selector effluent soluble COD to below 100 mg/l and to reduce readily metabolizable organic matter to virtually zero (< 1 mg/l). Soluble COD/NO3-N removal stoichiometry is in the range 6.0-6.7. Selector systems have elevated soluble substrate removal and denitrification rates compared to CSTR systems. These rates are not affected greatly by temperature (20-25°C) for CSTR sludges but are for selector sludges. Upon exhaustion of nitrate in a selector soluble COD leaks out of the activated sludge in significant amounts. Thiothrix sp. and type 021N denitrify only to NO2 and at much slower rates than Zoogloearamigera does to N2. A sequencing batch system provides an optimistic estimate of the SVI that can be obtained by an anoxic selector system.


1996 ◽  
Vol 33 (1) ◽  
pp. 311-323 ◽  
Author(s):  
A. Witteborg ◽  
A. van der Last ◽  
R. Hamming ◽  
I. Hemmers

A method is presented for determining influent readily biodegradable substrate concentration (SS). The method is based on three different respiration rates, which can be measured with a continuous respiration meter which is operated in a cyclic way. Within the respiration meter nitrification is inhibited through the addition of ATU. Simulations were used to develop the respirometry set-up and decide upon the experimental design. The method was tested as part of a large measurement programme executed at a full-scale plant. The proposed respirometry set-up has been shown to be suitable for a semi-on-line determination of an influent SS which is fully based on the IAWQ #1 vision of the activated sludge process. The YH and the KS play a major role in the principle, and should be measured directly from the process.


1994 ◽  
Vol 30 (11) ◽  
pp. 255-261 ◽  
Author(s):  
Barth F. Smets ◽  
Timothy G. Ellis ◽  
Stephanie Brau ◽  
Richard W. Sanders ◽  
C. P. Leslie Grady

This study quantified the kinetic differences in microbial communities isolated from completely mixed activated sludge (CMAS) systems that were operated either with or without an aerobic selector preceding the main reactor. A new respirometric method was employed that allowed the determination of biodegradation kinetics from single oxygen consumption curves, thereby minimizing physiological changes to the examined communities during the assay. Results indicated that increased values for Ks and μmax for acetate, phenol, and 4-chlorophenol degradation were measured in the CMAS system operated with a selector. The biomass yields on acetate, phenol, and 4-chlorophenol were very similar in both systems. These findings indicate that the operation of CMAS systems with aerobic selectors may result in the selection for degrading populations with higher Ks and μmax values for both biogenic and xenobiotic organic compounds, and that substrate storage in the selector only partially contributes to increased substrate removal rates.


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1355-1363 ◽  
Author(s):  
C-W. Kim ◽  
H. Spanjers ◽  
A. Klapwijk

An on-line respiration meter is presented to monitor three types of respiration rates of activated sludge and to calculate effluent and influent short term biochemical oxygen demand (BODst) in the continuous activated sludge process. This work is to verify if the calculated BODst is reliable and the assumptions made in the course of developing the proposed procedure were acceptable. A mathematical model and a dynamic simulation program are written for an activated sludge model plant along with the respiration meter based on mass balances of BODst and DO. The simulation results show that the three types of respiration rate reach steady state within 15 minutes under reasonable operating conditions. As long as the respiration rate reaches steady state the proposed procedure calculates the respiration rate that is equal to the simulated. Under constant and dynamic BODst loading, the proposed procedure is capable of calculating the effluent and influent BODst with reasonable accuracy.


1993 ◽  
Vol 28 (10) ◽  
pp. 309-316
Author(s):  
Bilsen Beler Baykal

Small activated sludge systems operate in transient states under intermittent and variable flows. Simulations for such a treatment plant in a summer house site operating on a seasonal basis is investigated for system performance and viability using the five component inert soluble substrate generation model. The results have revealed that the viability drops to zero within the first month after the cessation of the feed for intermittently loaded systems that are fed during the summer months, while it never reaches that value for systems operating all year round with reduced flows off season. Restartup is compulsory for the intermittent loadings while the system adapts itself in a stepwise manner for the year round operation. Other factors being comparable, conventional operation with shorter sludge ages may be preferable since viability of the sludge is higher and the effluent COD is comparable.


Sign in / Sign up

Export Citation Format

Share Document