scholarly journals Brassinosteroid and hydrogen peroxide improve photosynthetic machinery, stomatal movement, root morphology and cell viability and reduce Cu- triggered oxidative burst in tomato

2021 ◽  
Vol 207 ◽  
pp. 111081 ◽  
Author(s):  
Faroza Nazir ◽  
Qazi Fariduddin ◽  
Anjuman Hussain ◽  
Tanveer Alam Khan
2013 ◽  
Vol 31 (3) ◽  
pp. 278
Author(s):  
Wen-Qi XIE ◽  
Jin-Ping ZHANG ◽  
Jian-Yi TAN ◽  
Xiao-Li XUAN ◽  
Yong-Fei WANG ◽  
...  

2019 ◽  
Vol 19 (9) ◽  
pp. 688-698 ◽  
Author(s):  
Azam Roohi ◽  
Mahin Nikougoftar ◽  
Hamed Montazeri ◽  
Shadisadat Navabi ◽  
Fazel Shokri ◽  
...  

Background: Oxidative stress and chronic hyperglycemia are two major side effects of type 2 diabetes affecting all cell types including mesenchymal stem cells (MSCs). As a cell therapy choice, understanding the behavior of MSCs will provide crucial information for efficient treatment. Methods: Placental mesenchymal stem cells were treated with various concentrations of glucose, metformin, rapamycin, and hydrogen peroxide to monitor their viability and cell cycle distribution. Cellular viability was examined via the MTT assay. Cell cycle distribution was studied by propidium iodide staining and apoptosis was determined using Annexin Vpropidium iodide staining and flow cytometry. Involvement of potential signaling pathways was evaluated by Western blotting for activation of Akt, P70S6K, and AMPK. Results: The results indicated that high glucose augmented cell viability and reduced metformin toxic potential. However, the hydrogen peroxide and rapamycin toxicities were exacerbated. Conclusion: Our findings suggest that high glucose concentration has a major effect on placental mesenchymal stem cell viability in the presence of rapamycin, metformin and hydrogen peroxide in culture.


2020 ◽  
Vol 01 ◽  
Author(s):  
Ayşe Mine Yılmaz ◽  
Gökhan Biçim ◽  
Kübra Toprak ◽  
Betül Karademir Yılmaz ◽  
Irina Milisav ◽  
...  

Background: Different cellular responses influence the progress of cancer. In this study, we have investigated the effect of hydrogen peroxide and quercetin induced changes on cell viability, apoptosis and oxidative stress in human hepatocellular carcinoma (HepG2) cells. Methods: The effects of hydrogen peroxide and quercetin on cell viability, cell cycle phases and oxidative stress related cellular changes were investigated. Cell viability was assessed by WST-1 assay. Apoptosis rate, cell cycle phase changes and oxidative stress were measured by flow cytometry. Protein expressions of p21, p27, p53, NF-Kβ-p50 and proteasome activity were determined by Western blot and fluorometry, respectively. Results: Hydrogen peroxide and quercetin treatment resulted in decreased cell viability and increased apoptosis in HepG2 cells. Proteasome activity was increased by hydrogen peroxide but decreased by quercetin treatment. Conclusion: Both agents resulted in decreased p53 protein expression and increased cell death by different mechanisms regarding proteostasis and cell cycle phases.


2010 ◽  
Vol 2010 ◽  
pp. 1-4 ◽  
Author(s):  
Jirapa Chetsawang ◽  
Piyarat Govitrapong ◽  
Banthit Chetsawang

It has been reported that overproduction of reactive oxygen species occurs after brain injury and mediates neuronal cells degeneration. In the present study, we examined the role of Ras signaling on hydrogen peroxide-induced neuronal cells degeneration in dopaminergic neuroblastoma SH-SY5Y cells. Hydrogen peroxide significantly reduced cell viability in SH-SY5Y cultured cells. An inhibitor of the enzyme that catalyzes the farnesylation of Ras proteins, FTI-277, and a competitive inhibitor of GTP-binding proteins, GDP-beta-S significantly decreased hydrogen peroxide-induced reduction in cell viability in SH-SY5Y cultured cells. The results of this study might indicate that a Ras-dependent signaling pathway plays a role in hydrogen peroxide-induced toxicity in neuronal cells.


Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1871
Author(s):  
Karolina Chodkowska ◽  
Anna Ciecierska ◽  
Kinga Majchrzak ◽  
Piotr Ostaszewski ◽  
Tomasz Sadkowski

Gamma-oryzanol (GO) is a popular supplement for performance horses, dogs, and humans. Previous studies indicated that GO supplementation decreases creatine kinase activity and lactate level after exercise and may affect oxidative stress in Thoroughbred horses. GO may change genes expression in equine satellite cells (ESC). The purpose of this study was to evaluate the effect of GO on miRNA, gene expression, oxidative stress, and cell damage and viability in differentiating ESC pretreated with hydrogen peroxide (H2O2). ESCs were obtained from a young horse’s skeletal muscle. ESCs were pre-incubated with GO (24 h) and then exposed to H2O2 for one hour. For the microRNA and gene expression assessment, the microarray technique was used. Identified miRNAs and genes were validated using real time-quantitative polymerase chain reaction. Several tests related to cell viability, cell damage, and oxidative stress were performed. The microarray analysis revealed differences in 17 miRNAs and 202 genes between GO-treated and control ESC. The tests related to apoptosis, cell viability, and oxidative stress showed that GO affects these processes to varying degrees. Our results suggest that GO can change miRNA and gene expression and may impact the processes involved in tissue repairing after an injury.


Author(s):  
Hasriadi . ◽  
Matusorn Wong-on ◽  
Phakhamon Lapphanichayakool ◽  
Nanteetip Limpeanchob

Objective: Artocarpus lakoocha Roxb. is a traditional medical plant native to Southeast Asia and used as a dried aqueous extract so-called puag haad. Its role (and its major ingredient, oxyresveratrol) as an antioxidant neuroprotectant were explored.Methods: Differentiated SH-SY5Y neuroblastoma cells in 96-well plates were challenged with 200 µM H2O2 for 4 h and either Trolox (100 µM), oxyresveratrol (5-100 µM), or puag haad (1.2-25 µg/ml) applied 2 h before H2O2 or for 20 h after H2O2 washout. Cell viability, mitochondrial function, intracellular ROS, and lipid peroxidation were assessed.Results: Continuous presence of both H2O2 and antioxidant reduced mitochondrial function by ~50% but only by 30% with antioxidant. Sustained 24 h H2O2 showed no recoveries with antioxidants. Cell viability was modestly restored when antioxidants accompanied H2O2 for 4 h and both washed for another 20 h, but little recovery of mitochondrial function even though antioxidants removed ROS and prevent lipid peroxidation. Antioxidants added for 20 h after H2O2 marginally improve mitochondria and modestly restore cell viability, but lipid peroxidation was completely reversed.Conclusion: These results show that mitochondrial protection was illusive, yet both tested compounds, puag haad and oxyresveratrol, improved cell viability and especially ROS levels and lipid peroxidation. The potency oxyresveratrol on the redox-sensitive expression of antioxidant enzymes and its pharmacokinetics suggests that oral puag haad could provide effective protection in transient neurodegenerative disease. 


2015 ◽  
Vol 208 (2) ◽  
pp. 342-353 ◽  
Author(s):  
Kai Shi ◽  
Xin Li ◽  
Huan Zhang ◽  
Guanqun Zhang ◽  
Yaru Liu ◽  
...  

Author(s):  
Nur Konyalilar ◽  
Abdullah Burak Yıldız ◽  
Duygu Yazıcı ◽  
Hasan Bayram

Sign in / Sign up

Export Citation Format

Share Document