scholarly journals Fate of antibiotic resistance genes and metal resistance genes during the thermophilic fermentation of solid and liquid swine manures in an ectopic fermentation system

2021 ◽  
Vol 213 ◽  
pp. 111981
Author(s):  
Qi Shen ◽  
Jiangwu Tang ◽  
Xin Wang ◽  
Yuancheng Li ◽  
Xiaohong Yao ◽  
...  
Geoderma ◽  
2021 ◽  
Vol 382 ◽  
pp. 114760
Author(s):  
Na Zhang ◽  
Philippe Juneau ◽  
Ruilin Huang ◽  
Zhili He ◽  
Bo Sun ◽  
...  

2019 ◽  
Author(s):  
Ishfaq Nabi Najar ◽  
Mingma Thundu Sherpa ◽  
Sayak Das ◽  
Nagendra Thakur

AbstractMechanisms of occurrence and expressions of antibiotic resistance genes (ARGs) in thermophilic bacteria are still unknown owing to limited research and data. The evolution and proliferation of ARGs in the thermophilic bacteria is unclear and needs a comprehensive study. In this research, comparative profiling of antibiotic resistance genes and metal tolerance genes among the thermophilic bacteria has been done by culture-independent functional metagenomic methods. Metagenomic analysis showed the dominance of Proteobacteria, Actinobacteria. Firmicutes and Bacteroidetes in these hot springs. ARG analysis through shotgun gene sequencing was found to be negative in case of thermophilic bacteria. However, few of genes were detected but they were showing maximum similarity with mesophilic bacteria. Concurrently, metal resistance genes were also detected in the metagenome sequence of hot springs. Detection of metal resistance gene and absence of ARG’s investigated by whole genome sequencing, in the reference genome sequence of thermophilic Geobacillus also conveyed the same message. This evolutionary selection of metal resistance over antibiotic genes may have been necessary to survive in the geological craters which are full of different metals from earth sediments rather than antibiotics. Furthermore, the selection could be environment driven depending on the susceptibility of ARG’s in thermophilic environment as it reduces the chances of horizontal gene transfer. With these findings this article highlights many theories and culminates different scopes to study these aspects in thermophiles.


2018 ◽  
Author(s):  
G. A. Arango-Argoty ◽  
D. Dai ◽  
A. Pruden ◽  
P. Vikesland ◽  
L. S. Heath ◽  
...  

ABSTRACTDirect selection pressures imposed by antibiotics, indirect pressures by co-selective agents, and horizontal gene transfer are fundamental drivers of the evolution and spread of antibiotic resistance. Therefore, effective environmental monitoring tools should ideally capture not only antibiotic resistance genes (ARGs), but also mobile genetic elements (MGEs) and indicators of co-selective forces, such as metal resistance genes (MRGs). Further, a major challenge towards characterizing potential human risk is the ability to identify bacterial host organisms, especially human pathogens. Historically, short reads yielded by next-generation sequencing technology has hampered confidence in assemblies for achieving these purposes. Here we introduce NanoARG, an online computational resource that takes advantage of long reads produced by MinION nanopore sequencing. Specifically, long nanopore reads enable identification of ARGs in the context of relevant neighboring genes, providing relevant insight into mobility, co-selection, and pathogenicity. NanoARG allows users to upload sequence data online and provides various means to analyze and visualize the data, including quantitative and simultaneous profiling of ARG, MRG, MGE, and pathogens. NanoARG is publicly available and freely accessible at http://bench.cs.vt.edu/nanoARG.


Author(s):  
Lee K. Kimbell ◽  
Emily Lou LaMartina ◽  
Anthony D. Kappell ◽  
Jingwan Huo ◽  
Yin Wang ◽  
...  

Droplet digital PCR revealed antibiotic resistance genes, metal resistance genes, and intI1 across all pipe biofilm sample types (biomass surfaces, pipe surfaces, corrosion tubercles, and under corrosion tubercles).


2021 ◽  
Author(s):  
Maria Virginia Riquelme ◽  
Emily Garner ◽  
Suraj Gupta ◽  
Jacob Metch ◽  
Ni Zhu ◽  
...  

Wastewater-based epidemiology (WBE) for disease monitoring is highly promising, but requires consistent methodologies that incorporate predetermined objectives, targets, and metrics. We demonstrate a comprehensive metagenomics-based approach for global surveillance of antibiotic resistance in sewage, enabling assessment of: 1) which antibiotic resistance genes (ARGs) are shared across regions/communities; 2) which ARGs are discriminatory; and 3) factors associated with overall trends including antibiotic concentrations in sewage. Across an internationally-sourced transect of sewage samples collected using a centralized, standardized protocol, ARG relative abundances (16S rRNA gene-normalized) were highest in Hong Kong and India and lowest in Sweden and Switzerland, reflecting national policy, measured antibiotic concentrations, and metal resistance genes. Asian versus European/US resistomes were distinct, with macrolide-lincosamide-streptogramin, phenicol, quinolone, and tetracycline versus multidrug resistance ARGs being discriminatory, respectively. Sales data were not predictive of antibiotics measured in sewage, emphasizing need for direct measurements. The WBE approach defined herein demonstrates multi-site comparability and sensitivity to local/regional factors.


Sign in / Sign up

Export Citation Format

Share Document