scholarly journals Glomalin-related soil protein: The particle aggregation mechanism and its insight into coastal environment improvement

2021 ◽  
Vol 227 ◽  
pp. 112940
Author(s):  
Qiang Wang ◽  
Hualong Hong ◽  
Ran Liao ◽  
Bo Yuan ◽  
Hanyi Li ◽  
...  
2013 ◽  
Vol 655-657 ◽  
pp. 2340-2343
Author(s):  
Li Xi Yang ◽  
Xu Fang Zhou

Service-oriented manufacturing is an advanced manufacturing mode focused on integrating service with manufacturing. The remarkable importance is known to be strongly associated with the development of service-oriented economy in the period in which China transfers the traditional equipment manufacturing industry to the service-oriented manufacturing. We take a close insight into basic theories of service-oriented manufacturing, and then we analyze the characteristics, profiles, as well as the present situation of the equipment manufacturing. Finally, we propose some countermeasures for transferring the equipment manufacturing to the service-oriented manufacturing from the views of the aggregation mechanism, the network of innovative mechanism and manufacturing value-added chain.


1966 ◽  
Vol 24 ◽  
pp. 322-330
Author(s):  
A. Beer

The investigations which I should like to summarize in this paper concern recent photo-electric luminosity determinations of O and B stars. Their final aim has been the derivation of new stellar distances, and some insight into certain patterns of galactic structure.


1984 ◽  
Vol 75 ◽  
pp. 461-469 ◽  
Author(s):  
Robert W. Hart

ABSTRACTThis paper models maximum entropy configurations of idealized gravitational ring systems. Such configurations are of interest because systems generally evolve toward an ultimate state of maximum randomness. For simplicity, attention is confined to ultimate states for which interparticle interactions are no longer of first order importance. The planets, in their orbits about the sun, are one example of such a ring system. The extent to which the present approximation yields insight into ring systems such as Saturn's is explored briefly.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Author(s):  
E.J. Jenkins ◽  
D.S. Tucker ◽  
J.J. Hren

The size range of mineral and ceramic particles of one to a few microns is awkward to prepare for examination by TEM. Electrons can be transmitted through smaller particles directly and larger particles can be thinned by crushing and dispersion onto a substrate or by embedding in a film followed by ion milling. Attempts at dispersion onto a thin film substrate often result in particle aggregation by van der Waals attraction. In the present work we studied 1-10 μm diameter Al2O3 spheres which were transformed from the amprphous state to the stable α phase.After the appropriate heat treatment, the spherical powders were embedded in as high a density as practicable in a hard EPON, and then microtomed into thin sections. There are several advantages to this method. Obviously, this is a rapid and convenient means to study the microstructure of serial slices. EDS, ELS, and diffraction studies are also considerably more informative. Furthermore, confidence in sampling reliability is considerably enhanced. The major negative feature is some distortion of the microstructure inherent to the microtoming operation; however, this appears to have been surprisingly small. The details of the method and some typical results follow.


Author(s):  
Peter Sterling

The synaptic connections in cat retina that link photoreceptors to ganglion cells have been analyzed quantitatively. Our approach has been to prepare serial, ultrathin sections and photograph en montage at low magnification (˜2000X) in the electron microscope. Six series, 100-300 sections long, have been prepared over the last decade. They derive from different cats but always from the same region of retina, about one degree from the center of the visual axis. The material has been analyzed by reconstructing adjacent neurons in each array and then identifying systematically the synaptic connections between arrays. Most reconstructions were done manually by tracing the outlines of processes in successive sections onto acetate sheets aligned on a cartoonist's jig. The tracings were then digitized, stacked by computer, and printed with the hidden lines removed. The results have provided rather than the usual one-dimensional account of pathways, a three-dimensional account of circuits. From this has emerged insight into the functional architecture.


Author(s):  
J. J. Laidler ◽  
B. Mastel

One of the major materials problems encountered in the development of fast breeder reactors for commercial power generation is the phenomenon of swelling in core structural components and fuel cladding. This volume expansion, which is due to the retention of lattice vacancies by agglomeration into large polyhedral clusters (voids), may amount to ten percent or greater at goal fluences in some austenitic stainless steels. From a design standpoint, this is an undesirable situation, and it is necessary to obtain experimental confirmation that such excessive volume expansion will not occur in materials selected for core applications in the Fast Flux Test Facility, the prototypic LMFBR now under construction at the Hanford Engineering Development Laboratory (HEDL). The HEDL JEM-1000 1 MeV electron microscope is being used to provide an insight into trends of radiation damage accumulation in stainless steels, since it is possible to produce atom displacements at an accelerated rate with 1 MeV electrons, while the specimen is under continuous observation.


Sign in / Sign up

Export Citation Format

Share Document