Machine learning and SLIC for Tree-Canopies segmentation in urban areas

2021 ◽  
pp. 101465
Author(s):  
José Augusto Correa Martins ◽  
Geazy Menezes ◽  
Wesley Gonçalves ◽  
Diego André Sant’Ana ◽  
Lucas Prado Osco ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rajat Garg ◽  
Anil Kumar ◽  
Nikunj Bansal ◽  
Manish Prateek ◽  
Shashi Kumar

AbstractUrban area mapping is an important application of remote sensing which aims at both estimation and change in land cover under the urban area. A major challenge being faced while analyzing Synthetic Aperture Radar (SAR) based remote sensing data is that there is a lot of similarity between highly vegetated urban areas and oriented urban targets with that of actual vegetation. This similarity between some urban areas and vegetation leads to misclassification of the urban area into forest cover. The present work is a precursor study for the dual-frequency L and S-band NASA-ISRO Synthetic Aperture Radar (NISAR) mission and aims at minimizing the misclassification of such highly vegetated and oriented urban targets into vegetation class with the help of deep learning. In this study, three machine learning algorithms Random Forest (RF), K-Nearest Neighbour (KNN), and Support Vector Machine (SVM) have been implemented along with a deep learning model DeepLabv3+ for semantic segmentation of Polarimetric SAR (PolSAR) data. It is a general perception that a large dataset is required for the successful implementation of any deep learning model but in the field of SAR based remote sensing, a major issue is the unavailability of a large benchmark labeled dataset for the implementation of deep learning algorithms from scratch. In current work, it has been shown that a pre-trained deep learning model DeepLabv3+ outperforms the machine learning algorithms for land use and land cover (LULC) classification task even with a small dataset using transfer learning. The highest pixel accuracy of 87.78% and overall pixel accuracy of 85.65% have been achieved with DeepLabv3+ and Random Forest performs best among the machine learning algorithms with overall pixel accuracy of 77.91% while SVM and KNN trail with an overall accuracy of 77.01% and 76.47% respectively. The highest precision of 0.9228 is recorded for the urban class for semantic segmentation task with DeepLabv3+ while machine learning algorithms SVM and RF gave comparable results with a precision of 0.8977 and 0.8958 respectively.


2018 ◽  
Vol 8 (1) ◽  
pp. 16 ◽  
Author(s):  
Irina Matijosaitiene ◽  
Peng Zhao ◽  
Sylvain Jaume ◽  
Joseph Gilkey Jr

Predicting the exact urban places where crime is most likely to occur is one of the greatest interests for Police Departments. Therefore, the goal of the research presented in this paper is to identify specific urban areas where a crime could happen in Manhattan, NY for every hour of a day. The outputs from this research are the following: (i) predicted land uses that generates the top three most committed crimes in Manhattan, by using machine learning (random forest and logistic regression), (ii) identifying the exact hours when most of the assaults are committed, together with hot spots during these hours, by applying time series and hot spot analysis, (iii) built hourly prediction models for assaults based on the land use, by deploying logistic regression. Assault, as a physical attack on someone, according to criminal law, is identified as the third most committed crime in Manhattan. Land use (residential, commercial, recreational, mixed use etc.) is assigned to every area or lot in Manhattan, determining the actual use or activities within each particular lot. While plotting assaults on the map for every hour, this investigation has identified that the hot spots where assaults occur were ‘moving’ and not confined to specific lots within Manhattan. This raises a number of questions: Why are hot spots of assaults not static in an urban environment? What makes them ‘move’—is it a particular urban pattern? Is the ‘movement’ of hot spots related to human activities during the day and night? Answering these questions helps to build the initial frame for assault prediction within every hour of a day. Knowing a specific land use vulnerability to assault during each exact hour can assist the police departments to allocate forces during those hours in risky areas. For the analysis, the study is using two datasets: a crime dataset with geographical locations of crime, date and time, and a geographic dataset about land uses with land use codes for every lot, each obtained from open databases. The study joins two datasets based on the spatial location and classifies data into 24 classes, based on the time range when the assault occurred. Machine learning methods reveal the effect of land uses on larceny, harassment and assault, the three most committed crimes in Manhattan. Finally, logistic regression provides hourly prediction models and unveils the type of land use where assaults could occur during each hour for both day and night.


Author(s):  
X.-F. Xing ◽  
M. A. Mostafavi ◽  
G. Edwards ◽  
N. Sabo

<p><strong>Abstract.</strong> Automatic semantic segmentation of point clouds observed in a 3D complex urban scene is a challenging issue. Semantic segmentation of urban scenes based on machine learning algorithm requires appropriate features to distinguish objects from mobile terrestrial and airborne LiDAR point clouds in point level. In this paper, we propose a pointwise semantic segmentation method based on our proposed features derived from Difference of Normal and the features “directional height above” that compare height difference between a given point and neighbors in eight directions in addition to the features based on normal estimation. Random forest classifier is chosen to classify points in mobile terrestrial and airborne LiDAR point clouds. The results obtained from our experiments show that the proposed features are effective for semantic segmentation of mobile terrestrial and airborne LiDAR point clouds, especially for vegetation, building and ground classes in an airborne LiDAR point clouds in urban areas.</p>


Author(s):  
M. Esfandiari ◽  
S. Jabari ◽  
H. McGrath ◽  
D. Coleman

Abstract. Flood is one of the most damaging natural hazards in urban areas in many places around the world as well as the city of Fredericton, New Brunswick, Canada. Recently, Fredericton has been flooded in two consecutive years in 2018 and 2019. Due to the complicated behaviour of water when a river overflows its bank, estimating the flood extent is challenging. The issue gets even more challenging when several different factors are affecting the water flow, like the land texture or the surface flatness, with varying degrees of intensity. Recently, machine learning algorithms and statistical methods are being used in many research studies for generating flood susceptibility maps using topographical, hydrological, and geological conditioning factors. One of the major issues that researchers have been facing is the complexity and the number of features required to input in a machine-learning algorithm to produce acceptable results. In this research, we used Random Forest to model the 2018 flood in Fredericton and analyzed the effect of several combinations of 12 different flood conditioning factors. The factors were tested against a Sentinel-2 optical satellite image available around the flood peak day. The highest accuracy was obtained using only 5 factors namely, altitude, slope, aspect, distance from the river, and land-use/cover with 97.57% overall accuracy and 95.14% kappa coefficient.


2021 ◽  
Author(s):  
Eoghan Keany ◽  
Geoffrey Bessardon ◽  
Emily Gleeson

&lt;p&gt;To represent surface thermal, turbulent and humidity exchanges, Numerical Weather Prediction (NWP) systems require a land-cover classification map to calculate sur-face parameters used in surface flux estimation. The latest land-cover classification map used in the HARMONIE-AROME configuration of the shared ALADIN-HIRLAMNWP system for operational weather forecasting is ECOCLIMAP-SG (ECO-SG). The first evaluation of ECO-SG over Ireland suggested that sparse urban areas are underestimated and instead appear as vegetation areas (1). While the work of (2) on land-cover classification helps to correct the horizontal extent of urban areas, the method does not provide information on the vertical characteristics of urban areas. ECO-SG urban classification implicitly includes building heights (3), and any improvement to ECO-SG urban area extent requires a complementary building height dataset.&lt;/p&gt;&lt;p&gt;Openly accessible building height data at a national scale does not exist for the island of Ireland. This work seeks to address this gap in availability by extrapolating the preexisting localised building height data across the entire island. The study utilises information from both the temporal and spatial dimensions by creating band-wise temporal aggregation statistics from morphological operations, for both the Sentinel-1A/B and Sentinel-2A/B constellations (4). The extrapolation uses building height information from the Copernicus Urban Atlas, which contains regional coverage for Dublin at 10 m x10 m resolution (5). Various regression models were then trained on these aggregated statistics to make pixel-wise building height estimates. These model estimates were then evaluated with an adjusted RMSE metric, with the most accurate model chosen to map the entire country. This method relies solely on freely available satellite imagery and open-source software, providing a cost-effective mapping service at a national scale that can be updated more frequently, unlike expensive once-off private mapping services. Furthermore, this process could be applied by these services to reduce costs by taking a small representative sample and extrapolating the rest of the area. This method can be applied beyond national borders providing a uniform map that does not depends on the different private service practices facilitating the updates of global or continental land-cover information used in NWP.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;(1) G. Bessardon and E. Gleeson, &amp;#8220;Using the best available physiography to improve weather forecasts for Ireland,&amp;#8221; in Challenges in High-Resolution Short Range NWP at European level including forecaster-developer cooperation, European Meteorological Society, 2019.&lt;/p&gt;&lt;p&gt;(2) E. Walsh, et al., &amp;#8220;Using machine learning to produce a very high-resolution land-cover map for Ireland, &amp;#8221; Advances in Science and Research,&amp;#160; (accepted for publication).&lt;/p&gt;&lt;p&gt;(3) CNRM, &quot;Wiki - ECOCLIMAP-SG&quot; https://opensource.umr-cnrm.fr/projects/ecoclimap-sg/wiki&lt;/p&gt;&lt;p&gt;(4) D. Frantz, et al., &amp;#8220;National-scale mapping of building height using sentinel-1 and sentinel-2 time series,&amp;#8221; Remote Sensing of Environment, vol. 252, 2021.&lt;/p&gt;&lt;p&gt;(5) M. Fitrzyk, et al., &amp;#8220;Esa Copernicus sentinel-1 exploitation activities,&amp;#8221; in IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2019.&lt;/p&gt;


2021 ◽  
Author(s):  
Geoffrey Bessardon ◽  
Emily Gleeson ◽  
Eoin Walsh

&lt;p&gt;An accurate representation of surface processes is essential for weather forecasting as it is where most of the thermal, turbulent and humidity exchanges occur. The Numerical Weather Prediction (NWP) system, to represent these exchanges, requires a land-cover classification map to calculate the surface parameters used in the turbulent, radiative, heat, and moisture fluxes estimations.&lt;/p&gt;&lt;p&gt;The land-cover classification map used in the HARMONIE-AROME configuration of the shared ALADIN-HIRLAM NWP system for operational weather forecasting is ECOCLIMAP. ECOCLIMAP-SG (ECO-SG), the latest version of ECOCLIMAP, was evaluated over Ireland to prepare ECO-SG implementation in HARMONIE-AROME. This evaluation suggested that sparse urban areas are underestimated and instead appear as vegetation areas in ECO-SG [1], with an over-classification of grassland in place of sparse urban areas and other vegetation covers (Met &amp;#201;ireann internal communication). Some limitations in the performance of the current HARMONIE-AROME configuration attributed to surface processes and physiography issues are well-known [2]. This motivated work at Met &amp;#201;ireann to evaluate solutions to improve the land-cover map in HARMONIE-AROME.&lt;/p&gt;&lt;p&gt;In terms of accuracy, resolution, and the future production of time-varying land-cover map, the use of a convolutional neural network (CNN) to create a land-cover map using Sentinel-2 satellite imagery [3] over Estonia [4] presented better potential outcomes than the use of local datasets [5]. Consequently, this method was tested over Ireland and proven to be more accurate than ECO-SG for representing CORINE Primary and Secondary labels and at a higher resolution [5]. This work is a continuity of [5] focusing on 1. increasing the number of labels, 2. optimising the training procedure, 3. expanding the method for application to other HIRLAM countries and 4. implementation of the new land-cover map in HARMONIE-AROME.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;[1] Bessardon, G., Gleeson, E., (2019) Using the best available physiography to improve weather forecasts for Ireland. In EMS Annual Meeting.Retrieved fromhttps://presentations.copernicus.org/EMS2019-702_presentation.pdf&lt;/p&gt;&lt;p&gt;[2] Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W.,. . . K&amp;#248;ltzow, M. &amp;#216;. (2017). The HARMONIE&amp;#8211;AROME Model Configurationin the ALADIN&amp;#8211;HIRLAM NWP System. Monthly Weather Review, 145(5),1919&amp;#8211;1935.https://doi.org/10.1175/mwr-d-16-0417.1&lt;/p&gt;&lt;p&gt;[3] Bertini, F., Brand, O., Carlier, S., Del Bello, U., Drusch, M., Duca, R., Fernandez, V., Ferrario, C., Ferreira, M., Isola, C., Kirschner, V.,Laberinti, P., Lambert, M., Mandorlo, G., Marcos, P., Martimort, P., Moon, S., Oldeman,P., Palomba, M., and Pineiro, J.: Sentinel-2ESA&amp;#8217;s Optical High-ResolutionMission for GMES Operational Services, ESA bulletin. Bulletin ASE. Euro-pean Space Agency, SP-1322,2012&lt;/p&gt;&lt;p&gt;[4] Ulmas, P. and Liiv, I. (2020). Segmentation of Satellite Imagery using U-Net Models for Land Cover Classification, pp. 1&amp;#8211;11,http://arxiv.org/abs/2003.02899, 2020&lt;/p&gt;&lt;p&gt;[5] Walsh, E., Bessardon, G., Gleeson, E., and Ulmas, P. (2021). Using machine learning to produce a very high-resolution land-cover map for Ireland. Advances in Science and Research, (accepted for publication)&lt;/p&gt;


2021 ◽  
Vol 21 (9) ◽  
pp. 7373-7394
Author(s):  
Jérôme Barré ◽  
Hervé Petetin ◽  
Augustin Colette ◽  
Marc Guevara ◽  
Vincent-Henri Peuch ◽  
...  

Abstract. This study provides a comprehensive assessment of NO2 changes across the main European urban areas induced by COVID-19 lockdowns using satellite retrievals from the Tropospheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5p satellite, surface site measurements, and simulations from the Copernicus Atmosphere Monitoring Service (CAMS) regional ensemble of air quality models. Some recent TROPOMI-based estimates of changes in atmospheric NO2 concentrations have neglected the influence of weather variability between the reference and lockdown periods. Here we provide weather-normalized estimates based on a machine learning method (gradient boosting) along with an assessment of the biases that can be expected from methods that omit the influence of weather. We also compare the weather-normalized satellite-estimated NO2 column changes with weather-normalized surface NO2 concentration changes and the CAMS regional ensemble, composed of 11 models, using recently published estimates of emission reductions induced by the lockdown. All estimates show similar NO2 reductions. Locations where the lockdown measures were stricter show stronger reductions, and, conversely, locations where softer measures were implemented show milder reductions in NO2 pollution levels. Average reduction estimates based on either satellite observations (−23 %), surface stations (−43 %), or models (−32 %) are presented, showing the importance of vertical sampling but also the horizontal representativeness. Surface station estimates are significantly changed when sampled to the TROPOMI overpasses (−37 %), pointing out the importance of the variability in time of such estimates. Observation-based machine learning estimates show a stronger temporal variability than model-based estimates.


2022 ◽  
Vol 17 (1) ◽  
pp. 165-198
Author(s):  
Kamil Matuszelański ◽  
Katarzyna Kopczewska

This study is a comprehensive and modern approach to predict customer churn in the example of an e-commerce retail store operating in Brazil. Our approach consists of three stages in which we combine and use three different datasets: numerical data on orders, textual after-purchase reviews and socio-geo-demographic data from the census. At the pre-processing stage, we find topics from text reviews using Latent Dirichlet Allocation, Dirichlet Multinomial Mixture and Gibbs sampling. In the spatial analysis, we apply DBSCAN to get rural/urban locations and analyse neighbourhoods of customers located with zip codes. At the modelling stage, we apply machine learning extreme gradient boosting and logistic regression. The quality of models is verified with area-under-curve and lift metrics. Explainable artificial intelligence represented with a permutation-based variable importance and a partial dependence profile help to discover the determinants of churn. We show that customers’ propensity to churn depends on: (i) payment value for the first order, number of items bought and shipping cost; (ii) categories of the products bought; (iii) demographic environment of the customer; and (iv) customer location. At the same time, customers’ propensity to churn is not influenced by: (i) population density in the customer’s area and division into rural and urban areas; (ii) quantitative review of the first purchase; and (iii) qualitative review summarised as a topic.


Sign in / Sign up

Export Citation Format

Share Document