Integrated study of the role of Phragmites australis in azo-dye treatment in a constructed wetland: From pilot to molecular scale

2009 ◽  
Vol 35 (6) ◽  
pp. 961-970 ◽  
Author(s):  
L.C. Davies ◽  
G.J.M. Cabrita ◽  
R.A. Ferreira ◽  
C.C. Carias ◽  
J.M. Novais ◽  
...  
Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 39
Author(s):  
Qi Chen ◽  
Zhicheng Yan ◽  
Hao Zhang ◽  
KiBuem Kim ◽  
Weimin Wang

Al-based metallic glasses have a special atomic structure and should have a unique degradation ability in azo dye solutions. The Al88Ni9Y3 (Y3), Al85Ni9Y6 (Y6) and Al82Ni9Y9 (Y9) glassy ribbons are melt spun and used in degrading methyl orange (MO) azo dye solution with adding H2O2. With increasing cY, the as-spun ribbons have an increasing GFA (glass formability) and gradually decreased the degradation rate of MO solution. TEM (transmission electron microscopy) results show that the Y3 ribbon has nano-scale crystallites, which may form the channels to transport elements to the surface for degrading the MO solution. After adding H2O2, the degradation efficiency of Al-based glasses is improved and the Y6 ribbon has formed nano-scale crystallites embedded in the amorphous matrix and it has the largest improvement in MO solution degradation. These results indicate that forming nano-scale crystallites and adding H2O2 are effective methods to improve the degradation ability of Al-based glasses in azo dye solutions.


2022 ◽  
Vol 431 ◽  
pp. 133911
Author(s):  
Likui Feng ◽  
Shufei He ◽  
Hang Yu ◽  
Jian Zhang ◽  
Zizhang Guo ◽  
...  

Author(s):  
Veena Gayathri Krishnaswamy

The limited availability of fresh water is a global crisis. The growing consumption of fresh water due to anthropogenic activities has taken its toll on available water resources. Unfortunately, water bodies are still used as sinks for waste water from domestic and industrial sources. Azo dyes account for the majority of all dye stuffs, produced because they are extensively used in the textile, paper, food, leather, cosmetics, and pharmaceutical industries. Bacterial degradation of azo dyes under certain environmental conditions has gained momentum as a method of treatment, as these are inexpensive, eco-friendly, and can be applied to wide range of such complex dyes. The enzymatic approach has attracted much interest with regard to degradation of azo dyes from wastewater. The oxido-reductive enzymes are responsible for generating highly reactive free radicals that undergo complex series of spontaneous cleavage reactions, due to the susceptibility of enzymes to inactivation in the presence of the other chemicals. The oxidoreductive enzymes, such as lignin peroxidase, laccases, tyrosinase, azoreductase, riboflavin reductive, polyphenol oxidase, and aminopyrine n-demethylase, have been mainly utilized in the bacterial degradation of azo dye. Along with the reductive enzymes, some investigators have demonstrated the involvement in some other enzymes, such as Lignin peroxides and other enzymes. This chapter reviews the importance of enzymes in dye degradation.


Sign in / Sign up

Export Citation Format

Share Document