Effects of whole-tree harvesting on soil, soil water and tree growth – A dynamic modelling exercise in four long-term experiments

2019 ◽  
Vol 414 ◽  
pp. 108832
Author(s):  
Martin Erlandsson Lampa ◽  
Salim Belyazid ◽  
Giuliana Zanchi ◽  
Cecilia Akselsson
Author(s):  
Giuliana Zanchi ◽  
Klas Lucander ◽  
Veronika Kronnäs ◽  
Martin Erlandsson Lampa ◽  
Cecilia Akselsson

AbstractThe study investigated the effects of forest residue extraction on tree growth and base cations concentrations in soil water under different climatic conditions in Sweden. For this purpose, the dynamic model ForSAFE was used to compare the effects of whole-tree harvesting and stem harvesting on tree biomass and the soil solution over time at 6 different forest sites. The study confirmed the results from experimental sites showing a temporary reduction of base cation concentration in the soil solution for a period of 20–30 years after whole-tree harvesting. The model showed that this was mainly caused by the reduced inputs of organic material after residue extraction and thereby reduced nutrient mineralisation in the soil. The model results also showed that whole-tree harvesting can affect tree growth at nitrogen-poor forest sites, such as the ones in northern Sweden, due to the decrease of nitrogen availability after residue removal. Possible ways of reducing this impact could be to compensate the losses with fertilisation or extract residue without foliage in areas of Sweden with low nitrogen deposition. The study highlighted the need to better understand the medium- and long-term effects of whole-tree harvesting on tree growth, since the results suggested that reduced tree growth after whole-tree harvesting could be only temporary. However, these results do not account for prolonged extraction of forest residues that could progressively deplete nutrient pools and lead to permanent effects on tree growth.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 841
Author(s):  
Iveta Desaine ◽  
Annija Kārkliņa ◽  
Roberts Matisons ◽  
Anna Pastare ◽  
Andis Adamovičs ◽  
...  

The increased removal of forest-derived biomass with whole-tree harvesting (WTH) has raised concerns about the long-term productivity and sustainability of forest ecosystems. If true, this effect needs to be factored in the assessment of long-term feasibility to implement such a drastic forest management measure. Therefore, the economic performance of five experimental plantations in three different forest types, where in 1971 simulated WTH event occurred, was compared with pure, planted and conventionally managed (CH) Norway spruce stands of similar age and growing conditions. Potential incomes of CH and WTH stands were based on timber prices for period 2014–2020. However, regarding the economics of root and stump biomass utilization, they were not included in the estimates. In any given price level, the difference of internal rate of return between the forest types and selected managements were from 2.5% to 6.2%. Therefore, Norway spruce stands demonstrate good potential of independence regardless of stump removal at the previous rotation.


2015 ◽  
Vol 356 ◽  
pp. 101-111 ◽  
Author(s):  
P. Vangansbeke ◽  
A. De Schrijver ◽  
P. De Frenne ◽  
A. Verstraeten ◽  
L. Gorissen ◽  
...  

2014 ◽  
Vol 60 (2) ◽  
pp. 382-390 ◽  
Author(s):  
Austin J. Himes ◽  
Eric C. Turnblom ◽  
Robert B. Harrison ◽  
Kimberly M. Littke ◽  
Warren D. Devine ◽  
...  

2010 ◽  
Vol 101 (1-3) ◽  
pp. 43-59 ◽  
Author(s):  
Elena Vanguelova ◽  
Rona Pitman ◽  
Jukka Luiro ◽  
Heljä-Sisko Helmisaari

2019 ◽  
Vol 16 (22) ◽  
pp. 4429-4450 ◽  
Author(s):  
Cecilia Akselsson ◽  
Salim Belyazid ◽  
Johan Stendahl ◽  
Roger Finlay ◽  
Bengt A. Olsson ◽  
...  

Abstract. Soil and water acidification was internationally recognised as a severe environmental problem in the late 1960s. The interest in establishing “critical loads” led to a peak in weathering research in the 1980s and 1990s, since base cation weathering is the long-term counterbalance to acidification pressure. Assessments of weathering rates and associated uncertainties have recently become an area of renewed research interest, this time due to demand for forest residues to provide renewable bioenergy. Increased demand for forest fuels increases the risk of depleting the soils of base cations produced in situ by weathering. This is the background to the research programme Quantifying Weathering Rates for Sustainable Forestry (QWARTS), which ran from 2012 to 2019. The programme involved research groups working at different scales, from laboratory experiments to modelling. The aims of this study were to (1) investigate the variation in published weathering rates of base cations from different approaches in Sweden, with consideration of the key uncertainties for each method; (2) assess the robustness of the results in relation to sustainable forestry; and (3) discuss the results in relation to new insights from the QWARTS programme and propose ways to further reduce uncertainties. In the study we found that the variation in estimated weathering rates at single-site level was large, but still most sites could be placed reliably in broader classes of weathering rates. At the regional level, the results from the different approaches were in general agreement. Comparisons with base cation losses after stem-only and whole-tree harvesting showed sites where whole-tree harvesting was clearly not sustainable and other sites where variation in weathering rates from different approaches obscured the overall balance. Clear imbalances appeared mainly after whole-tree harvesting in spruce forests in southern and central Sweden. Based on the research findings in the QWARTS programme, it was concluded that the PROFILE/ForSAFE family of models provides the most important fundamental understanding of the contribution of weathering to long-term availability of base cations to support forest growth. However, these approaches should be continually assessed against other approaches. Uncertainties in the model approaches can be further reduced, mainly by finding ways to reduce uncertainties in input data on soil texture and associated hydrological parameters but also by developing the models, e.g. to better represent biological feedbacks under the influence of climate change.


2018 ◽  
Vol 69 (1) ◽  
pp. 33-43
Author(s):  
Roberts Čakšs ◽  
Linda Robalte ◽  
Iveta Desaine ◽  
Baiba Džeriņa ◽  
Aris Jansons

Abstract The long-term (50 years) effect of whole-tree harvesting (stump harvesting) on ground vegetation in experimental drained Norway spruce (Picea abies (L.) Karst.) stands was studied. We used a chronosequence approach to assess the long-term impact of whole-tree harvesting (WTH) on stands’ ground vegetation. WTH stands were compared with four control stands with different age and with the same forest type: young stand (15 years), middle-aged stand (45 years), mature stand (110 years) and over-mature stand (140 years). Species richness was similar between the WTH stand and middle-aged stand (61 and 60 species, respectively). Shannon-Wiener diversity indices in the WTH and middle-aged stand (3.40 and 3.19, respectively) indicated that the stands were similar to each other. A community similarity analysis showed that the composition of vegetation was similar between the WTH and middle-aged stand, although some species like Lycopodium clavatum and Diphasiastrum complanatum occurred only in the WTH stand. The study showed that a period of 50 years is sufficient for ground vegetation of a typical drained spruce forest to recover after WTH management.


1998 ◽  
Vol 2 (2/3) ◽  
pp. 345-352 ◽  
Author(s):  
B. Reynolds ◽  
P. A. Stevens

Abstract. A simple mass balance has been used to estimate soil calcium depletion during the growth of a 50 year old Sitka spruce crop on acid, base-poor peaty podzol soils in upland Wales. Growth of the crop will deplete the soil calcium reserve by an amount (205 kg Ca ha-1) approximately equivalent to the exchangeable calcium pool to the bottom of the profile and equal to 14% of the total soil calcium reserve to the bottom of the B horizon. Despite these predictions, measurements of exchangeable calcium show no differences beneath mature forest and acid grassland, implying that i) weathering rates in forest soils are greater than long-term estimates and predictions by the PROFILE soil chemistry model ii) the trees can access other sources of calcium or iii) there are significant errors in the mass balance. Following stem-only harvesting, growth of a 50 year old second rotation crop will lead to further depletion of soil calcium, but this amount (79 kg Ca ha-1), is less than for a second rotation crop following whole-tree harvesting (197 kg Ca ha-1). After the first crop, stem-only harvesting would allow a further 18 rotations before depletion of the total calcium reserve to the bottom of the B horizon. Whole-tree harvesting would allow for seven rotations after the first crop. These calculations assume that all sources of calcium are equally available to the crop. This can only be resolved by dynamic modelling of the calcium cycle at the ecosystem scale based on appropriate field measurements. The potential for significant soil acidification is therefore greater following whole-tree harvesting and, in line with current recommendations (Nisbet et al., 1997), this technique should probably be avoided on acidic, nutrient-poor soils unless remedial measures are included to enhance the soil base cation status.


Sign in / Sign up

Export Citation Format

Share Document