Less ice on the Baltic reduces the extent of hypoxic bottom waters and sedimentary phosphorus release

2009 ◽  
Vol 82 (4) ◽  
pp. 689-691 ◽  
Author(s):  
Jan E. Vermaat ◽  
Laurens M. Bouwer
2021 ◽  
Author(s):  
Astrid Hylén ◽  
Sebastiaan J. van de Velde ◽  
Mikhail Kononets ◽  
Mingyue Luo ◽  
Elin Almroth-Rosell ◽  
...  

Abstract. Phosphorus fertilisation (eutrophication) is expanding oxygen depletion in coastal systems worldwide. Under low-oxygen bottom-water conditions, phosphorus release from the sediment is elevated which further stimulates primary production. It is commonly assumed that re-oxygenation could break this ‘vicious cycle’ by increasing sedimentary phosphorus retention. Recently, a deep-water inflow into the Baltic Sea created a natural in-situ experiment that allowed us to investigate if temporary re-oxygenation stimulates sedimentary retention of dissolved inorganic phosphorus (DIP). Surprisingly, during this three-year-long study, we observed a transient but considerable increase, rather than a decrease, in the sediment efflux of DIP and other dissolved biogenic compounds. This suggested that the oxygenated inflow elevated the organic matter degradation in the sediment. As a result, the net sedimentary DIP release per m2 was 35–70 % higher over the years following the re-oxygenation than before. In contrast to previous assumptions, our results show that inflows of oxygenated water to anoxic bottom waters can increase the sedimentary phosphorus release.


2021 ◽  
Author(s):  
Stella-Theresa Stoicescu ◽  
Jaan Laanemets ◽  
Taavi Liblik ◽  
Māris Skudra ◽  
Oliver Samlas ◽  
...  

Abstract. The Gulf of Riga is a relatively shallow bay connected to the deeper central Baltic Sea (Baltic Proper) via straits with sills. The decrease in the near-bottom oxygen levels from spring to autumn is a common feature in the gulf, but in 2018, hypoxia was exceptional. We analyzed temperature, salinity, oxygen, and nutrient data collected in 2018 and historical data available from environmental databases. Forcing data from the study year were compared with their long-term means and variability. The year 2018 was exceptional due to occasionally dominating north-easterly winds supporting the inflow of saltier waters from the Baltic Proper and meteorological conditions causing fast development of thermal stratification in spring. Existing stratification hindered vertical transport between the near-bottom layer (NBL) and the water layers above it. The estimated oxygen consumption rate at the sediment surface in spring-summer 2018 was about 1.7 mmol O2 m−2 h−1 that exceeded the oxygen input to the NBL due to advection and mixing. We suggest that the observed pronounced oxygen depletion was magnified by the prolonged stratified season and haline stratification in the deep layer that maintained a decreased water volume between the seabed and the pycnocline. The observed increase in phosphate concentrations in the NBL in summer 2018 suggests a significant sediment phosphorus release in hypoxic conditions counteracting the mitigation measures to combat eutrophication. We conclude, if similar meteorological conditions as in 2018 could occur more frequently in the future, such extensive hypoxia would be more common in the Gulf of Riga and other coastal basins with similar morphology and human-induced elevated input of nutrients.


2017 ◽  
Vol 14 (23) ◽  
pp. 5607-5632 ◽  
Author(s):  
Ulrich Kotthoff ◽  
Jeroen Groeneveld ◽  
Jeanine L. Ash ◽  
Anne-Sophie Fanget ◽  
Nadine Quintana Krupinski ◽  
...  

Abstract. Sediment records recovered from the Baltic Sea during Integrated Ocean Drilling Program Expedition 347 provide a unique opportunity to study paleoenvironmental and climate change in central and northern Europe. Such studies contribute to a better understanding of how environmental parameters change in continental shelf seas and enclosed basins. Here we present a multi-proxy-based reconstruction of paleotemperature (both marine and terrestrial), paleosalinity, and paleoecosystem changes from the Little Belt (Site M0059) over the past  ∼  8000 years and evaluate the applicability of inorganic- and organic-based proxies in this particular setting. All salinity proxies (diatoms, aquatic palynomorphs, ostracods, diol index) show that lacustrine conditions occurred in the Little Belt until  ∼  7400 cal yr BP. A connection to the Kattegat at this time can thus be excluded, but a direct connection to the Baltic Proper may have existed. The transition to the brackish–marine conditions of the Littorina Sea stage (more saline and warmer) occurred within  ∼  200 years when the connection to the Kattegat became established after  ∼  7400 cal yr BP. The different salinity proxies used here generally show similar trends in relative changes in salinity, but often do not allow quantitative estimates of salinity. The reconstruction of water temperatures is associated with particularly large uncertainties and variations in absolute values by up to 8 °C for bottom waters and up to 16 °C for surface waters. Concerning the reconstruction of temperature using foraminiferal Mg  /  Ca ratios, contamination by authigenic coatings in the deeper intervals may have led to an overestimation of temperatures. Differences in results based on the lipid paleothermometers (long chain diol index and TEXL86) can partly be explained by the application of modern-day proxy calibrations to intervals that experienced significant changes in depositional settings: in the case of our study, the change from freshwater to marine conditions. Our study shows that particular caution has to be taken when applying and interpreting proxies in coastal environments and marginal seas, where water mass conditions can experience more rapid and larger changes than in open ocean settings. Approaches using a multitude of independent proxies may thus allow a more robust paleoenvironmental assessment.


2021 ◽  
Vol 18 (9) ◽  
pp. 2981-3004
Author(s):  
Astrid Hylén ◽  
Sebastiaan J. van de Velde ◽  
Mikhail Kononets ◽  
Mingyue Luo ◽  
Elin Almroth-Rosell ◽  
...  

Abstract. Phosphorus fertilisation (eutrophication) is expanding oxygen depletion in coastal systems worldwide. Under low-oxygen bottom water conditions, phosphorus release from the sediment is elevated, which further stimulates primary production. It is commonly assumed that re-oxygenation could break this “vicious cycle” by increasing the sedimentary phosphorus retention. Recently, a deep-water inflow into the Baltic Sea created a natural in situ experiment that allowed us to investigate if temporary re-oxygenation stimulates sedimentary retention of dissolved inorganic phosphorus (DIP). Surprisingly, during this 3-year study, we observed a transient but considerable increase, rather than a decrease, in the sediment efflux of DIP and other dissolved biogenic compounds. This suggested that the oxygenated inflow elevated the organic matter degradation in the sediment, likely due to an increase in organic matter supply to the deeper basins, potentially combined with a transient stimulation of the mineralisation efficiency. As a result, the net sedimentary DIP release per m2 was 56 %–112 % higher over the years following the re-oxygenation than before. In contrast to previous assumptions, our results show that inflows of oxygenated water to anoxic bottom waters can increase the sedimentary phosphorus release.


2016 ◽  
Author(s):  
Daniela Niemeyer ◽  
Tronje P. Kemena ◽  
Katrin J. Meissner ◽  
Andreas Oschlies

Abstract. Observations indicate an expansion of oxygen minimum zones (OMZs) over the past 50 years, likely related to ongoing deoxygenation caused by reduced solubility, changes in stratification and circulation, and a potential acceleration of organic matter turnover in a warming climate. Higher temperatures also lead to enhanced weathering on land, which, in turn, increase the phosphorus and alkalinity flux into the ocean. The overall area of ocean sediments that are in direct contact with low oxygen bottom waters also increases with expanding OMZs. This leads to an additional release of phosphorus from ocean sediments and therefore raises the ocean's phosphorus inventory even further. Higher availability in phosphorus enhances biological production, remineralisation and oxygen consumption, and might therefore lead to further expansions of OMZs, representing a positive feedback. A negative feedback arises from the enhanced productivity-induced drawdown of carbon and also increased uptake of CO2 due to increased alkalinity, which, in turn, got there through weathering. This feedback leads to a decrease in atmospheric CO2 and weathering rates. Here we quantify these two competing feedbacks on millennial timescales for a high CO2 emission scenario. Using the UVic Earth System Climate Model of intermediate complexity, our model results suggest that the positive benthic phosphorus release feedback has only a minor impact on the size of OMZs in the next 1000 years, although previous studies assume that the phosphorus release feedback was the main factor for anoxic conditions during Cretaceous period. The increase in the marine phosphorus inventory under assumed business-as-usual global warming conditions originates, on millennial timescales, almost exclusively from the input via terrestrial weathering and causes a 4 to 5-fold expansion of the suboxic water volume in the model.


2021 ◽  
Author(s):  
Itzel Ruvalcaba Baroni ◽  
Jenny Hieronymus ◽  
Sam Fredriksson ◽  
Lars Arneborg

<p>The Gulf of Bothnia is the only sub-basin of the Baltic Sea with no serious eutrophication. However, long-term observations have shown degradation of the water quality over the past years, indicating warning signals for the future. Here, we use a high resolution ocean circulation model including biogeochemistry to study 21st century nutrient and oxygen changes in the Gulf of Bothnia. We analyze ensembles for 5 different scenarios; a historical (1975-2005) and 4 future projections (2006-2100). For the projections, two atmospheric <em>p</em>CO<sub>2 </sub>trajectories are used, RCP4.5 and RCP8.5, and two settings for nutrient loads are applied to each RCP scenario: one following the Baltic Sea Action Plan (BSAP) and the other assuming business as usual. We also test a historical scenario but with no local nutrient loads to better understand the biogeochemical influence of the lateral open boundary. The comparison of observations with the historical scenario shows that oxygen trends are well captured by the model despite a small bias in nutrient concentrations. Our results suggest that the Bothnian Bay is more sensitive to river loads than the Bothnian Sea, which is primarily affected by the inflows from the Baltic proper. All future projections show a decrease in phosphate concentrations and an increase in nitrate concentrations due to lower/higher input of phosphate/nitrate from the Baltic proper. Oxygen concentrations in bottom waters of the Gulf of Bothnia are not susceptible to become hypoxic in the future. However, when business as usual is applied for nutrient loads, oxygen concentrations decrease significantly over the entire future period and short episodes of low oxygen conditions in bottom waters (with less than 5 ml O<sub>2</sub>/l) become more frequent and more pronounced in the Bothnian Sea, especially towards the end of the century.</p><p> </p>


Author(s):  
Sina Shahabi-Ghahfarokhi ◽  
Sarah Josefsson ◽  
Anna Apler ◽  
Karsten Kalbitz ◽  
Mats Åström ◽  
...  

Abstract The unsustainable settlement and high industrialization around the catchment of the Baltic Sea has left records of anthropogenic heavy metal contamination in Baltic Sea sediments. Here, we show that sediments record post-industrial and anthropogenic loads of Cd, Zn, and Pb over a large spatial scale in the Baltic Sea. We also demonstrate that there is a control on the accumulation of these metals in relation to oxic/anoxic conditions of bottom waters. The total concentrations of Cd, Zn, and Pb were obtained with the near-total digestion method in thirteen cores collected from the Bothnian Bay, the Bothnian Sea, and the west and central Baltic Proper. The lowest average concentrations of Cd, Zn, and Pb were observed in Bothnian Bay (0.4, 125, 40.2 mg kg−1 DW, respectively). In contrast, the highest concentrations were observed in the west Baltic Proper (5.5, 435, and 56.6 mg kg−1 DW, respectively). The results indicate an increasing trend for Cd, Zn, and Pb from the early nineteenth century until the 1970s, followed by a decrease until 2000–2008. However, surface sediments still have concentrations above the pre-industrial values suggested by the Swedish EPA (Cd is 0.2, Zn is 85, and Pb is 31 mg kg−1 DW). The results also show that the pre-industrial Cd, Zn, and Pb concentrations obtained from 3 cores with ages < 1500 B.C. were 1.8, 1.7, and 1.2 times higher, respectively, than the pre-industrial values suggested by the Swedish EPA. To conclude, accumulations of metals in the Baltic Sea are governed by anthropogenic load and the redox conditions of the environment. The significance of correct environmental governance (measures) can be illustrated with the reduction in the pollution of Pb, Zn, and Cd within the Baltic Sea since the 1980s.


2017 ◽  
Author(s):  
Ulrich Kotthoff ◽  
Jeroen Groeneveld ◽  
Jeanine L. Ash ◽  
Anne-Sophie Fanget ◽  
Nadine Quintana Krupinski ◽  
...  

Abstract. Sediment records recovered from the Baltic Sea during Integrated Ocean Drilling Program Expedition 347 provide a unique opportunity to study paleoenvironmental and -climate change in central/northern Europe. Such studies contribute to a better understanding of how environmental parameters change in continental shelf seas and enclosed basins. We present a multi-proxy-based reconstruction of paleotemperature (both marine and terrestrial), -salinity, and -ecosystem changes from the Little Belt (Site M0059) over the past ~ 8000 years, and evaluate the applicability of inorganic and organic proxies in this particular setting. Salinity proxies (diatoms, aquatic palynomorphs, ostracods, long chain diol index – LDI) show that lacustrine conditions occurred in the Little Belt until ~ 7400 cal. yr BP. A connection to the Kattegat at this time can be excluded, but a direct connection to the Baltic Proper may have existed. The transition to the brackish-marine conditions (more saline and warmer) of the Littorina Sea stage occurred within ~ 200 yr when the connection to the Kattegat became established (~ 7400 cal. yr BP). The different salinity proxies used here show similar trends in relative changes in salinity, but do often not allow quantitative estimates of salinity. The reconstruction of water temperatures is associated with particular large uncertainties and variations in absolute values by up to 8 °C for bottom waters and even up to 16 °C for summer surface waters. Concerning the foraminiferal Mg/Ca reconstruction, contamination in the deeper intervals may have led to an over-estimation of temperatures. Differences in results based on the lipid proxies (LDI and TEXL86) can partly be explained by the application of modern-day proxy calibrations in areas which experienced significant changes in depositional settings, in case of our study e.g. change from freshwater to marine conditions. Our study shows that particular caution has to be taken when applying and interpreting proxies in coastal environments, where water mass conditions can experience more rapid and larger changes than in open-ocean settings. Approaches using a multitude of independent proxies may thus allow a more robust paleoenvironmental assessment.


2019 ◽  
Author(s):  
Hagen Radtke ◽  
Sandra-Esther Brunnabend ◽  
Ulf Gräwe ◽  
H. E. Markus Meier

Abstract. The detection of historical long-term trends is often complicated by interdecadal variability in the time series of interest. A mechanistic understanding of the causes of this variability allows to separate the signals. Salinity of the Baltic Sea contains a dominant 30-year cycle with a peak-to-peak amplitude of around 0.4 g kg−1 at the surface. We use both analysis of empirical data and a numerical model reconstruction for the period of 1850–2008 to explain these changes. It is known that the 30-year periodicity coincides with a variability in river runoff. Periods of enhanced runoff are followed by lower salinities. We demonstrate, however, that the drop in mean salinity cannot be understood as a simple dilution of the Baltic Sea water by freshwater. Rather, the 30-year periodicity in river runoff occurs synchronously with a substantial variation in salt water import across Darss Sill. Fewer strong inflow events occur in periods of enhanced river runoff. This reduction in the import of high-salinity water is the main reason for the freshening of the water below the permanent halocline. In the bottom waters, the variation in salinity is larger than at the surface. As a consequence, the surface layer salinity variation is caused by a combination of both effects, a direct dilution by river water and a reduced upward diffusion of salt as a consequence of reduced inflow activity. It remains unclear whether the covariation in river runoff and inflow activity are only a spurious correlation during the historical period, or a mechanistic link exists between the two quantities, e.g. both are caused by the same atmospheric patterns.


2017 ◽  
Vol 8 (3) ◽  
pp. 817-826 ◽  
Author(s):  
Jukka-Pekka Myllykangas ◽  
Tom Jilbert ◽  
Gunnar Jakobs ◽  
Gregor Rehder ◽  
Jan Werner ◽  
...  

Abstract. In late 2014, a large, oxygen-rich salt water inflow entered the Baltic Sea and caused considerable changes in deep water oxygen concentrations. We studied the effects of the inflow on the concentration patterns of two greenhouse gases, methane and nitrous oxide, during the following year (2015) in the water column of the Gotland Basin. In the eastern basin, methane which had previously accumulated in the deep waters was largely removed during the year. Here, volume-weighted mean concentration below 70 m decreased from 108 nM in March to 16.3 nM over a period of 141 days (0.65 nM d−1), predominantly due to oxidation (up to 79 %) following turbulent mixing with the oxygen-rich inflow. In contrast nitrous oxide, which was previously absent from deep waters, accumulated in deep waters due to enhanced nitrification following the inflow. Volume-weighted mean concentration of nitrous oxide below 70 m increased from 11.8 nM in March to 24.4 nM in 141 days (0.09 nM d−1). A transient extreme accumulation of nitrous oxide (877 nM) was observed in the deep waters of the Eastern Gotland Basin towards the end of 2015, when deep waters turned anoxic again, sedimentary denitrification was induced and methane was reintroduced to the bottom waters. The Western Gotland Basin gas biogeochemistry was not affected by the inflow.


Sign in / Sign up

Export Citation Format

Share Document