scholarly journals Energy and Economic Analysis of the CO2 Capture from Flue Gas of Combined Cycle Power Plants

2014 ◽  
Vol 45 ◽  
pp. 1165-1174 ◽  
Author(s):  
Maura Vaccarelli ◽  
Roberto Carapellucci ◽  
Lorena Giordano
Author(s):  
Frank Sander ◽  
Richard Carroni ◽  
Stefan Rofka ◽  
Eribert Benz

The rigorous reduction of greenhouse gas emissions in the upcoming decades is only achievable with contribution from the following strategies: production efficiency, demand reduction of energy and carbon dioxide (CO2) capture from fossil fueled power plants. Since fossil fueled power plants contribute largely to the overall global greenhouse gas emissions (> 25% [1]), it is worthwhile to capture and store the produced CO2 from those power generation processes. For natural-gas-fired power plants, post-combustion CO2 capture is the most mature technology for low emissions power plants. The capture of CO2 is achieved by chemical absorption of CO2 from the exhaust gas of the power plant. Compared to coal fired power plants, an advantage of applying CO2 capture to a natural-gas-fired combined cycle power plant (CCPP) is that the reference cycle (without CO2 capture) achieves a high net efficiency. This far outweighs the drawback of the lower CO2 concentration in the exhaust. Flue Gas Recirculation (FGR) means that flue gas after the HRSG is partially cooled down and then fed back to the GT intake. In this context FGR is beneficial because the concentration of CO2 can be significantly increased, the volumetric flow to the CO2 capture unit will be reduced, and the overall performance of the CCPP with CO2 capture is increased. In this work the impact of FGR on both the Gas Turbine (GT) and the Combined Cycle Power Plant (CCPP) is investigated and analyzed. In addition, the impact of FGR for a CCPP with and without CO2 capture is investigated. The fraction of flue gas that is recirculated back to the GT, need further to be cooled, before it is mixed with ambient air. Sensitivity studies on flue gas recirculation ratio and temperature are conducted. Both parameters affect the GT with respect to change in composition of working fluid, the relative humidity at the compressor inlet, and the impact on overall performance on both GT and CCPP. The conditions at the inlet of the compressor also determine how the GT and water/steam cycle are impacted separately due to FGR. For the combustion system the air/fuel-ratio (AFR) is an important parameter to show the impact of FGR on the combustion process. The AFR indicates how close the combustion process operates to stoichiometric (or technical) limit for complete combustion. The lower the AFR, the closer operates the combustion process to the stoichiometric limit. Furthermore, the impact on existing operational limitations and the operational behavior in general are investigated and discussed in context of an operation concept for a GT with FGR.


Author(s):  
Maria Elena Diego ◽  
Jean-Michel Bellas ◽  
Mohamed Pourkashanian

Post-combustion CO2 capture from natural gas combined cycle (NGCC) power plants is challenging due to the large flow of flue gas with low CO2 content (∼3–4%vol.) that needs to be processed in the capture stage. A number of alternatives have been proposed to solve this issue and reduce the costs of the associated CO2 capture plant. This work focuses on the selective exhaust gas recirculation (S-EGR) configuration, which uses a membrane to selectively recirculate CO2 back to the inlet of the compressor of the turbine, thereby greatly increasing the CO2 content of the flue gas sent to the capture system. For this purpose, a parallel S-EGR NGCC system (53% S-EGR ratio) coupled to an amine capture plant using MEA 30%wt. was simulated using gCCS (gPROMS). It was benchmarked against an unabated NGCC system, a conventional NGCC coupled with an amine capture plant (NGCC+CCS), and an EGR NGCC power plant (39% EGR ratio) using amine scrubbing as the downstream capture technology. The results obtained indicate that the net power efficiency of the parallel S-EGR system can be up to 49.3% depending on the specific consumption of the auxiliary S-EGR systems, compared to the 49.0% and 49.8% values obtained for the NGCC+CCS and EGR systems, respectively. A preliminary economic study was also carried out to quantify the potential of the parallel S-EGR configuration. This high-level analysis shows that the cost of electricity for the parallel S-EGR system varies from 82.1–90.0 $/MWhe for the scenarios considered, with the cost of CO2 avoided being in the range of 79.7–105.1 $/tonne CO2. The results obtained indicate that there are potential advantages of the parallel S-EGR system in comparison to the NGCC+CCS configuration in some scenarios. However, further benefits with respect to the EGR configuration will depend on future advancements and cost reductions achieved on membrane-based systems.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2519 ◽  
Author(s):  
Emmanuel Adu ◽  
Y.D. Zhang ◽  
Dehua Liu ◽  
Paitoon Tontiwachwuthikul

For the envisaged large number of commercial-scale carbon capture and storage (CCS) projects that are to be implemented in the near future, a number of issues still need to be resolved, the most prominent being the large capital and operational costs incurred for the CO2 capture and compression process. An economic assessment of the capture and compression system based on optimal design data is important for CCS deployment. In this paper, the parametric process design approach is used to optimally design coal and natural gas monoethanolamine (MEA)-based post-combustion CO2 absorption–desorption capture (PCC) and compression plants that can be integrated into large-scale 550 MW coal-fired and 555 MW natural gas combined cycle (NGCC) power plants, respectively, for capturing CO2 from their flue gases. The study then comparatively assesses the energy performance and economic viabilities of both plants to ascertain their operational feasibilities and relative costs. The parametric processes are presented and discussed. The results indicate that, at 90% CO2 capture efficiency, for the coal PCC plant, with 13.5 mol.% CO2 in the inlet flue gas, at an optimum liquid/gas ratio of 2.87 kg/kg and CO2 lean loading of 0.2082 mol CO2/mol MEA, the CO2 avoidance cost is about $72/tCO2, and, for the NGCC PCC plant, with 4.04 mol.% CO2 in the inlet flue gas, at an optimum liquid/gas ratio of 0.98 kg/kg and CO2 lean loading of 0.2307 mol CO2/mol MEA, the CO2 avoidance cost is about $94/tCO2.


Author(s):  
Maria Elena Diego ◽  
Jean-Michel Bellas ◽  
Mohamed Pourkashanian

Postcombustion CO2 capture from natural gas combined cycle (NGCC) power plants is challenging due to the large flow of flue gas with low CO2 content (∼3–4 vol %) that needs to be processed in the capture stage. A number of alternatives have been proposed to solve this issue and reduce the costs of the associated CO2 capture plant. This work focuses on the selective exhaust gas recirculation (S-EGR) configuration, which uses a membrane to selectively recirculate CO2 back to the inlet of the compressor of the turbine, thereby greatly increasing the CO2 content of the flue gas sent to the capture system. For this purpose, a parallel S-EGR NGCC system (53% S-EGR ratio) coupled to an amine capture plant (ACP) using monoethanolamine (MEA) 30 wt % was simulated using gCCS (gPROMS). It was benchmarked against an unabated NGCC system, a conventional NGCC coupled with an ACP (NGCC + carbon capture and storage (CCS)), and an EGR NGCC power plant (39% EGR ratio) using amine scrubbing as the downstream capture technology. The results obtained indicate that the net power efficiency of the parallel S-EGR system can be up to 49.3% depending on the specific consumption of the auxiliary S-EGR systems, compared to the 49.0% and 49.8% values obtained for the NGCC + CCS and EGR systems, respectively. A preliminary economic study was also carried out to quantify the potential of the parallel S-EGR configuration. This high-level analysis shows that the cost of electricity (COE) for the parallel S-EGR system varies from 82.1 to 90.0 $/MWhe for the scenarios considered, with the cost of CO2 avoided (COA) being in the range of 79.7–105.1 $/ton CO2. The results obtained indicate that there are potential advantages of the parallel S-EGR system in comparison to the NGCC + CCS configuration in some scenarios. However, further benefits with respect to the EGR configuration will depend on future advancements and cost reductions achieved on membrane-based systems.


2021 ◽  
Vol 110 ◽  
pp. 103423
Author(s):  
Shijian Lu ◽  
Mengxiang Fang ◽  
Qingfang Li ◽  
Hongfu Chen ◽  
Fu Chen ◽  
...  

Author(s):  
Junjie Yan ◽  
Xiaoqu Han ◽  
Jiahuan Wang ◽  
Ming Liu ◽  
Sotirios Karellas

Lignite is a domestic strategic reserve of low rank coals in many countries for its abundant resource and competitive price. Combustion for power generation is still an important approach to its utilization. However, the high moisture content always results in low efficiencies of lignite-direct-fired power plants. Lignite pre-drying is thus proposed as an effective method to improve the energy efficiency. The present work focuses on the flue gas pre-dried lignite-fired power system (FPLPS), which is integrated with fan mill pulverizing system and waste heat recovery. The thermo-economic analysis model was developed to predict its energy saving potential at design conditions. The pre-drying upgrade factor was defined to express the coupling of pre-drying system with boiler system and the efficiency improvement effect. The energy saving potential of the FPLPS, when applied in a 600 MW supercritical power unit, was determined to be 1.48 %-pts. It was concluded that the improvement of boiler efficiency mainly resulted from the lowered boiler exhaust temperature after firing pre-dried low moisture content lignite and the lowered dryer exhaust gas temperature after pre-heating the boiler air supply. Keywords: lignite; pre-drying; thermodynamic analysis; thermo-economics


2014 ◽  
Vol 35 (4) ◽  
pp. 83-95 ◽  
Author(s):  
Daniel Czaja ◽  
Tadeusz Chmielnak ◽  
Sebastian Lepszy

Abstract A thermodynamic and economic analysis of a GT10 gas turbine integrated with the air bottoming cycle is presented. The results are compared to commercially available combined cycle power plants based on the same gas turbine. The systems under analysis have a better chance of competing with steam bottoming cycle configurations in a small range of the power output capacity. The aim of the calculations is to determine the final cost of electricity generated by the gas turbine air bottoming cycle based on a 25 MW GT10 gas turbine with the exhaust gas mass flow rate of about 80 kg/s. The article shows the results of thermodynamic optimization of the selection of the technological structure of gas turbine air bottoming cycle and of a comparative economic analysis. Quantities are determined that have a decisive impact on the considered units profitability and competitiveness compared to the popular technology based on the steam bottoming cycle. The ultimate quantity that can be compared in the calculations is the cost of 1 MWh of electricity. It should be noted that the systems analyzed herein are power plants where electricity is the only generated product. The performed calculations do not take account of any other (potential) revenues from the sale of energy origin certificates. Keywords: Gas turbine air bottoming cycle, Air bottoming cycle, Gas turbine, GT10


Sign in / Sign up

Export Citation Format

Share Document