scholarly journals 21%-efficient PERL Solar Cells with Plated Front Contacts on Industrial 156mm p-type Crystalline Silicon Wafers

2014 ◽  
Vol 55 ◽  
pp. 431-436 ◽  
Author(s):  
Taejun Kim ◽  
Jong-Keun Lim ◽  
Hae-Na-Ra Shin ◽  
Dohyeon Kyeong ◽  
Jinyoun Cho ◽  
...  
2015 ◽  
Vol 1770 ◽  
pp. 7-12 ◽  
Author(s):  
Henriette A. Gatz ◽  
Yinghuan Kuang ◽  
Marcel A. Verheijen ◽  
Jatin K. Rath ◽  
Wilhelmus M.M. (Erwin) Kessels ◽  
...  

ABSTRACTSilicon heterojunction solar cells (SHJ) with thin intrinsic layers are well known for their high efficiencies. A promising way to further enhance their excellent characteristics is to enable more light to enter the crystalline silicon (c-Si) absorber of the cell while maintaining a simple cell configuration. Our approach is to replace the amorphous silicon (a-Si:H) emitter layer with a more transparent nanocrystalline silicon oxide (nc-SiOx:H) layer. In this work, we focus on optimizing the p-type nc-SiOx:H material properties, grown by radio frequency plasma enhanced chemical vapor deposition (rf PECVD), on an amorphous silicon layer.20 nm thick nanocrystalline layers were successfully grown on a 5 nm a-Si:H layer. The effect of different ratios of trimethylboron to silane gas flow rates on the material properties were investigated, yielding an optimized material with a conductivity in the lateral direction of 7.9×10-4 S/cm combined with a band gap of E04 = 2.33 eV. Despite its larger thickness as compared to a conventional window a-Si:H p-layer, the novel layer stack of a-Si:H(i)/nc-SiOx:H(p) shows significantly enhanced transmission compared to the stack with a conventional a-Si:H(p) emitter. Altogether, the chosen material exhibits promising characteristics for implementation in SHJ solar cells.


1994 ◽  
Vol 37-38 ◽  
pp. 355-360 ◽  
Author(s):  
A.W. Weeber ◽  
H.H.C. de Moor ◽  
R.A. Steeman ◽  
W.C. Sinke ◽  
F. Schuurmans ◽  
...  

1991 ◽  
Vol 113 (4) ◽  
pp. 219-223 ◽  
Author(s):  
J. F. Osterle ◽  
S. R. Swantner

The thermodynamic dissipations in crystalline silicon solar cells are identified and evaluated. The ratio of the exergy of the output electrical power to the exergy of the input solar radiation is the effectiveness of the solar cell. The input exergy is converted to the output exergy (the electrical power delivered) with a series of dissipations. These dissipations are identified and evaluated for crystalline silicon cells in terms of the thickness and certain fundamental properties of the light absorbing silicon semiconductor (in this case a P-type material). It is assumed that the N-type material is very thin and absorbs no radiation. For representative values of these properties and a range of thicknesses, it is found that the dissipations due to transmission and thermalization and in the photogeneration process are dominant. The dissipations due to the dark current and recombination are small.


2010 ◽  
Vol 96 (1) ◽  
pp. 013507 ◽  
Author(s):  
Qi Wang ◽  
M. R. Page ◽  
E. Iwaniczko ◽  
Yueqin Xu ◽  
L. Roybal ◽  
...  

1994 ◽  
Vol 358 ◽  
Author(s):  
B. Jagannathan ◽  
J. Yi ◽  
R. Wallace ◽  
W. A. Anderson

ABSTRACTHeterojunction solar cells were fabricated by glow discharge deposition of amorphous silicon on p-type crystalline silicon resulting in a n/i/p structure. Dark I-V-T data on the devices show that the conduction in the forward bias regime (<0.4 volts) for better devices agrees with a multi-tunnelling-capture-emission process. The photoresponse was evaluated (under 100 mW/cm2) for various a-Si thicknesses and substrate resistivities. Spectral response tests showed an increased low wavelength absorption as the a-Si thickness was decreased. The blue response of the devices have better fill-factors than the red response indicating defects at the interface. Further, I-V-T and C-V measurements also corroborate the presence of defect states which seem to prevent the spread of the depletion region in crystalline silicon. The photoresponse was found to be very sensitive to the interface defects and the fill-factors ranged from 0.42, for the sample in which the depletion region had spread, to 0.1 in those where the depletion region had been reduced in thickness by the interface states.


Sign in / Sign up

Export Citation Format

Share Document