scholarly journals A multi-objective study on the operation of task/ambient air conditioning systems in subtropics

2017 ◽  
Vol 142 ◽  
pp. 1880-1887 ◽  
Author(s):  
Mao Ning ◽  
Hao Jingyu ◽  
Pan Dongmei ◽  
Du Jing ◽  
Song Mengjie
2019 ◽  
pp. 49-53
Author(s):  
Євген Іванович Трушляков ◽  
Микола Іванович Радченко ◽  
Андрій Миколайович Радченко ◽  
Сергій Георгійович Фордуй ◽  
Сергій Анатолійович Кантор ◽  
...  

Maintaining the operation of refrigeration compressors in nominal or close modes by selecting a rational design thermal load and distributing it in response to the behavior of the current thermal load according to the current climatic conditions is one of the promising reserves for improving the energy efficiency of air conditioning systems, which implementation ensures maximum or close to it in the annual cooling production according to air conditioning duties. In general case, the total range of current thermal loads of any air-conditioning system includes a range of unstable loads caused by precooling of ambient air with significant fluctuations in the cooling capacity according to current climatic conditions, and a range of relatively stable cooling capacity expended for further lowering the air temperature from a certain threshold temperature to the final outlet temperature. If a range of stable thermal load can be provided within operating a conventional compressor in a mode close to nominal, then precooling the ambient air with significant fluctuations in thermal load requires adjusting the cooling capacity by using a variable speed compressor or using the excess of heat accumulated at reduced load. Such a stage principle of cooling ensures the operation of refrigerating machines matching the behavior of current thermal loads of any air-conditioning system, whether the central air conditioning system with ambient air procession in the central air conditioner or its combination with the local indoors recirculation air conditioning systems in the air-conditioning system. in essence, as combinations of subsystems – precooling of ambient air with the regulation of cooling capacity and subsequent cooling air to the mouth of the set point temperature under relatively stable thermal load.


2015 ◽  
Vol 12 (6) ◽  
pp. 607-618 ◽  
Author(s):  
Sudhir Chitrapady Vishweshwara ◽  
Jalal Marhoon AL. Dhali

Sultanate of Oman witness a long summer with mostly clear blue skies and typically higher ambient temperatures as seen in other GCC countries. This type of environment warrants the use of high capacity and reliable air conditioning systems, both at resident buildings and vehicles. During summer, cars parked directly under the sun, experience a very high temperature rise inside its cabin in the range of near to 50 °C. This high cabin air temperature often causes thermal discomfort to passengers entering the parked car and also has a serious impact on the cars air-conditioning systems, as it takes longer time to bring back the thermal comfort inside the cabin. The studies also revealed that the high cabin temperature often causes health hazards to occupants, especially to infants. Current research paper, reports an experimental study carried out on a parked car, with instrumentation to identify the various the temperature zones inside the car cabin. This experiential study is aimed to improve the thermal comfort inside the cabin through solar powered cabin air ventilator for effective management of cabin air temperature. The study was carried on a chosen vehicle parked at a set direction and location exposed to day long sunlight at Muscat for considerable period of time. Firstly, the study identified the various temperature zones inside the car cabin and ventilation driven with a 10 Wp solar panel was developed to accomplish the required air exchange inside the cabin, along with continues instantaneous heat rejection through steady air exchange between inside and outside environment. A simple ventilator was developed by means of two fans which drove out the hot trapped air and a secondary fan to cool down the temperature inside the car by providing fresh air for limited time. The experimental investigation showed that the vehicle cabin temperature was typically 10 °C lower when ventilator was turned on. On a typical day on month of May, the cabin air temperatures was approximately 21 °C higher than the ambient air temperature, while with the developed ventilator the difference between the cabin and outside air temperature was reduced by 50% approximately. With the ventilator in operation, it was observed that time taken to reduce the cabin air temperature through vehicle air conditioning system to a satisfactory level was much quicker; typically it took less than the half of the time compared to those values tested without ventilator. Thus indicating, the power saving potential of the developed system as the desired level of thermal comfort can be achieved within the shorter period of time. The reduction in time taken to cool down the cabin temperature to the acceptable limits has direct two fold effects; firstly, the fuel consumption for cooling purpose is reduced and secondly, increased thermal comfort level inside the cars cabin. However, the temperature drop pattern was not similar all around the cabin, due to the varied level of cabin sunlight exposure. Temperature drop at the front of the car was lower than in middle and rear of the car. From the study it can be concluded that, with solar powered ventilator, the temperature inside the car was nearly 10 °C lesser compared to cabin without ventilator and it also helps in to bring back the thermal comfort inside the cabin nearly within half time vis-à-vis cabin without ventilation.


Sign in / Sign up

Export Citation Format

Share Document