Reducing energy use and operational cost of air conditioning systems with multi-objective evolutionary algorithms

Author(s):  
Cristian Perfumo ◽  
John K. Ward ◽  
Julio H. Braslavsky
2014 ◽  
Vol 513-517 ◽  
pp. 3568-3571
Author(s):  
Bing Xu ◽  
Cheng Qian Xu ◽  
Zhong Jin Shi ◽  
Bao Guo Zheng ◽  
Xue Han Zhu

In order to reduce the energy consumption of air conditioning systems, the best running model is adjusting the humiture according to actual needs of environment and groups.This paper take out a control strategy based on the Multi-objective Optimization Evolutionary Algorithms.With cntrol simulation, it achieve the energy saving effect in air conditioning units groups, proposed multi-objective optimization control strategy.


Author(s):  
Milton Meckler

What does remain a growing concern for many users of Data Centers is their continuing availability following the explosive growth of internet services in recent years, The recent maximizing of Data Center IT virtualization investments has resulted in improving the consolidation of prior (under utilized) server and cabling resources resulting in higher overall facility utilization and IT capacity. It has also resulted in excessive levels of equipment heat release, e.g. high energy (i.e. blade type) servers and telecommunication equipment, that challenge central and distributed air conditioning systems delivering air via raised floor or overhead to rack mounted servers arranged in alternate facing cold and hot isles (in some cases reaching 30 kW/rack or 300 W/ft2) and returning via end of isle or separated room CRAC units, which are often found to fight each other, contributing to excessive energy use. Under those circumstances, hybrid, indirect liquid cooling facilities are often required to augment above referenced air conditioning systems in order to prevent overheating and degradation of mission critical IT equipment to maintain rack mounted subject rack mounted server equipment to continue to operate available within ASHRAE TC 9.9 prescribed task psychometric limits and IT manufacturers specifications, beyond which their operational reliability cannot be assured. Recent interest in new web-based software and secure cloud computing is expected to further accelerate the growth of Data Centers which according to a recent study, the estimated number of U.S. Data Centers in 2006 consumed approximately 61 billion kWh of electricity. Computer servers and supporting power infrastructure for the Internet are estimated to represent 1.5% of all electricity generated which along with aggregated IT and communications, including PC’s in current use have also been estimated to emit 2% of global carbon emissions. Therefore the projected eco-footprint of Data Centers into the future has now become a matter of growing concern. Accordingly our paper will focus on how best to improve the energy utilization of fossil fuels that are used to power Data Centers, the energy efficiency of related auxiliary cooling and power infrastructures, so as to reduce their eco-footprint and GHG emissions to sustainable levels as soon as possible. To this end, we plan to demonstrate significant comparative savings in annual energy use and reduction in associated annual GHG emissions by employing a on-site cogeneration system (in lieu of current reliance on remote electric power generation systems), introducing use of energy efficient outside air (OSA) desiccant assisted pre-conditioners to maintain either Class1, Class 2 and NEBS indoor air dew-points, as needed, when operated with modified existing (sensible only cooling and distributed air conditioning and chiller systems) thereby eliminating need for CRAC integral unit humidity controls while achieving a estimated 60 to 80% (virtualized) reduction in the number servers within a existing (hypothetical post-consolidation) 3.5 MW demand Data Center located in southeastern (and/or southern) U.S., coastal Puerto Rico, or Brazil characterized by three (3) representative microclimates ranging from moderate to high seasonal outside air (OSA) coincident design humidity and temperature.


2017 ◽  
Vol 142 ◽  
pp. 1880-1887 ◽  
Author(s):  
Mao Ning ◽  
Hao Jingyu ◽  
Pan Dongmei ◽  
Du Jing ◽  
Song Mengjie

Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1785
Author(s):  
Ranjan Pratap Singh ◽  
Ranadip K. Das

A rotary desiccant-based air-conditioning system is a heat-driven hybrid system which combines different technologies such as desiccant dehumidification, evaporative cooling, refrigeration, and regeneration. This system has an opportunity to utilize low-grade thermal energy obtained from the sun or other sources. In this paper, the basic principles and recent research developments related to rotary desiccant-based cooling systems are recalled and their applications and importance are summarized. It is shown that with novel system configurations and new desiccant materials, there is great potential for improving the performance and consistency of rotary desiccant systems; at the same time, the use of solar energy for regeneration purposes can minimize the operating cost to a great extent. Some examples are presented to demonstrate how rotary desiccant air conditioning can be a promising solution for replacing traditional vapor-compression air-conditioning systems. Recent advances and ongoing research related to solar-powered hybrid rotary desiccant cooling systems are also summarized. The hybrid systems make use of a vapor-compression system in order to have better operational flexibility. These systems, although they consume electrical energy, use solar energy as the principal source of energy, and hence, significant savings of premium energy can be obtained compared to conventional vapor-compression systems. However, further research and development are required in order to realize the sustainable operation of solar rotary desiccant air-conditioning systems, as solar energy is not steady. Reductions in capital cost and size, along with improvements in efficiency and reliability of the system is still needed for it to become a player in the market of air conditioning.


2010 ◽  
Vol 42 (3) ◽  
pp. 315-325 ◽  
Author(s):  
Y. Sukamongkol ◽  
S. Chungpaibulpatana ◽  
B. Limmeechokchai ◽  
P. Sripadungtham

2014 ◽  
Vol 494-495 ◽  
pp. 1674-1677
Author(s):  
Bing Xu ◽  
Fang Hong Yuan ◽  
Bao Guo Zheng ◽  
Zhong Jin Shi ◽  
Yi Huan Hu

This article discusses energy conservation for air conditioning systems in rail transit stations. At first, the paper analyzes the energy consumption condition in the air conditioning systems in rail transit stations. Then, it discusses application of appropriate control strategy for reducing energy consumption. In the end, the paper calculates effiency and amount of the energy saving based on the control strategy.


Sign in / Sign up

Export Citation Format

Share Document