Decreased foliar nitrogen and crop yield in organic rainfed almond trees during transition from reduced tillage to no-tillage in a dryland farming system

2013 ◽  
Vol 49 ◽  
pp. 149-157 ◽  
Author(s):  
María Martínez-Mena ◽  
Noelia Garcia-Franco ◽  
María Almagro ◽  
Antonio Ruiz-Navarro ◽  
Juan Albaladejo ◽  
...  
2010 ◽  
Vol 91 (2) ◽  
pp. 268-272 ◽  
Author(s):  
María del Mar Alguacil ◽  
Antonio Roldán ◽  
Jaime R Salinas-García ◽  
José Ignacio Querejeta

2021 ◽  
Vol 212 ◽  
pp. 105064
Author(s):  
Flackson Tshuma ◽  
Francis Rayns ◽  
Johan Labuschagne ◽  
James Bennett ◽  
Pieter Andreas Swanepoel

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1276
Author(s):  
Vaida Steponavičienė ◽  
Aušra Marcinkevičienė ◽  
Lina Marija Butkevičienė ◽  
Lina Skinulienė ◽  
Vaclovas Bogužas

The composition of weed communities in agricultural crops is dependent on soil properties and the applied agronomic practices. The current study determined the effect of different tillage systems and crop residue on the soil weed community composition. The research programme encompassed 2013–2015 in a long-term field experiment located in the Experimental Station of Vytautas Magnus University in Lithuania. The soil type in the experimental field was qualified as Endocalcaric Stagnosol (Aric, Drainic, Ruptic, Amphisiltic). Weeds were categorised into communities according to soil pH, nitrogen and moisture indicators. The results of investigations were grouped using cluster analysis. Agricultural crops were dominated by different weed species depending on the soil pH and moisture. Weed species were relatively more frequent indicating nitrogen-rich and very nitrogen-rich soils. In the reduced tillage and no-tillage systems, an increase in the abundance of weed species indicating moderate acidity and low acidity, moderately wet and wet, nitrogen-rich and very nitrogen-rich soils was observed. The application of plant residues decreased the weed species abundance. In the reduced tillage and no-tillage systems, the quantitative distribution of weed was often uneven. By evaluating the association of weed communities with groups of different tillage systems with or without plant residues, their control can be optimised.


Heliyon ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. e06727
Author(s):  
Abe Shegro Gerrano ◽  
Isack Mathew ◽  
Admire IT. Shayanowako ◽  
Stephen Amoo ◽  
John Jason Mellem ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1459
Author(s):  
Heba S. A. Salama ◽  
Ali I. Nawar ◽  
Hassan E. Khalil ◽  
Ahmed M. Shaalan

The sequence of the preceding crops in a no-tillage farming system, could interact with the integrated use of mineral and organic nitrogen (N) sources in a way that improves the growth and productivity of the terminal maize crop, meanwhile, enhancing its N use efficiency (NUE). In the current study, six legume-cereal crop sequences, including faba bean, soybean, Egyptian clover, wheat, and maize were evaluated along two experimental rotations that ended up by planting the terminal maize crop. In addition, the effects of applying variable mineral nitrogen (MN) rates with and without the incorporation of farmyard manure (FYM) on the productive performance of maize and its NUE were tested. The field experiments were conducted in a no-tillage irrigated farming system in Northern Egypt, a location that is characterized by its arid, Mediterranean climate. Results revealed that increasing the legume component in the evaluated crop sequences, up to 75%, resulted in improved maize ear leaf area, 1000-grain weight, and harvest index, thus, a higher final grain yield, with the inclusion of Egyptian clover was slightly better than faba bean. Comparing the crop sequences with 50% legume contribution uncovered the positive effects of soybean preceding crop on the terminal maize crop. Substituting 25% of the applied MN with FYM resulted in similar maize yields to the application of the equivalent 100% MN rates. The fertilizer treatments significantly interacted with the crop sequences in determining the maize grain yield, where the highest legume crop contribution in the crop sequence (75%) equalized the effects of the different fertilizer treatments on maize grain yield. The integrated use of FYM with MN in maize fertilization improved the NUE compared to the application of MN alone. Comparing fertilization treatments with similar MN content, with and without FYM, revealed that the difference in NUE was attributed to the additional amount of FYM. In similar conditions to the current study, it is recommended to grow faba bean two years before maize, while Egyptian clover could be grown directly preceding maize growth, with frequent inclusion of soybean in the sequence, this could be combined with the application of an average of 200 kg MN ha−1 in addition to FYM.


Bragantia ◽  
2010 ◽  
Vol 69 (suppl) ◽  
pp. 9-18 ◽  
Author(s):  
Osvaldo Guedes Filho ◽  
Sidney Rosa Vieira ◽  
Marcio Koiti Chiba ◽  
Célia Regina Grego

It is known, for a long time, that crop yields are not uniform at the field. In some places, it is possible to distinguish sites with both low and high yields even within the same area. This work aimed to evaluate the spatial and temporal variability of some crop yields and to identify potential zones for site specific management in an area under no-tillage system for 23 years. Data were analyzed from a 3.42 ha long term experimental area at the Centro Experimental Central of the Instituto Agronômico, located in Campinas, Sao Paulo State, Brazil. The crop yield data evaluated included the following crops: soybean, maize, lablab and triticale, and all of them were cultivated since 1985 and sampled at a regular grid of 302 points. Data were normalized and analyzed using descriptive statistics and geostatistical tools in order to demonstrate and describe the structure of the spatial variability. All crop yields showed high variability. All of them also showed spatial dependence and were fitted to the spherical model, except for the yield of the maize in 1999 productivity which was fitted to the exponential model. The north part of the area presented repeated high values of productivity in some years. There was a positive cross correlation amongst the productivity values, especially for the maize crops.


2011 ◽  
Vol 57 (1) ◽  
pp. 21-30
Author(s):  
Božena Šoltysová ◽  
Martin Danilovič

Tillage in Relation to Distribution of Nutrients and Organic Carbon in the SoilChanges of total nitrogen, available phosphorus, available potassium and soil organic carbon were observed on gleyic Fluvisols (locality Milhostov) at the following crops: grain maize (2005), spring barley (2006), winter wheat (2007), soya (2008), grain maize (2009). The experiment was realized at three soil tillage technologies: conventional tillage, reduced tillage and no-tillage. Soil samples were collected from three depths (0-0.15 m; 0.15-0.30 m; 0.30-0.45 m). The ratio of soil organic carbon to total nitrogen was also calculated.Soil tillage affects significantly the content of total nitrogen in soil. The difference between the convetional tillage and soil protective tillages was significant. The balance showed that the content of total nitrogen decreased at reduced tillage by 5.2 rel.%, at no-tillage by 5.1 rel.% and at conventional tillage by 0.7 rel.%.Similarly, the content of organic matter in the soil was significantly affected by soil tillage. The content of soil organic carbon found at the end of the research period was lower by 4.1 rel.% at reduced tillage, by 4.8 rel.% at no-tillage and by 4.9 rel.% at conventional tillage compared with initial stage. The difference between the convetional tillage and soil protective tillages was significant.Less significant relationship was found between the soil tillage and the content of available phosphorus. The balance showed that the content of available phosphorus was increased at reduced tillage (by 4.1 rel.%) and was decreased at no-tillage (by 9.5 rel.%) and at conventional tillage (by 3.3 rel.%).Tillage did not significantly affect the content of available potassium in the soil.


2019 ◽  
Vol 106 ◽  
pp. 39-48 ◽  
Author(s):  
Margarida Arrobas ◽  
António Ribeiro ◽  
David Barreales ◽  
Ermelinda L. Pereira ◽  
M. Ângelo Rodrigues

1990 ◽  
Vol 14 (2) ◽  
pp. 73-76 ◽  
Author(s):  
Mary L. Duryea

Abstract Top pruning, growing-season fertilization, and fall fertilization were investigated in a Florida nursery to determine the effects on crop yield, morphology, nutrition, and field performance. Top pruning improved crop yield by reducing the number of cull seedlings. Top-pruned seedlings were smaller in diameter, height, and weight and had an increased number of multiple tops. In the field, top-pruned seedlings had the same survival and height growth, and after 3 years the percentage with multiple tops was the same as nonpruned seedlings. From these results, top pruning seems to be a nondetrimental practice for controlling height and producing a uniform crop in the nursery. Reducing growing-season fertilization slightly decreased shoot height, but not as much as top pruning. Also, these seedlings had reduced foliar nitrogen (N) concentration and content and grew less after 1 year in the field indicating that cutting back on N in the nursery may not be a beneficial way to control height. Fall fertilization in the nursery increased N in seedlings but did not affect growth or survival in the field. South. J. Appl. For. 14(2):73-76.


Sign in / Sign up

Export Citation Format

Share Document