Over winter cover crops provide yield benefits for spring barley and maintain soil health in northern Europe

2021 ◽  
Vol 130 ◽  
pp. 126363
Author(s):  
Jonathan Holland ◽  
Jennifer L. Brown ◽  
Katrin MacKenzie ◽  
Roy Neilson ◽  
Simone Piras ◽  
...  
2020 ◽  
Author(s):  
Carson Bowers ◽  
Michael D. Toews ◽  
Jason M. Schmidt

AbstractMaintaining habitat throughout the season in annual cropping systems provides resource stability for arthropod communities. Stabilizing resource availability should lead to diverse predatory communities and their associated ecosystem services such as biological control. There is a need for studies to test change in predator communities due to habitat provisioning and estimate associated food web responses. Here we quantified predator community structure and used molecular gut-content analysis to reconstruct predator food webs in response to winter cover crops (i.e. cereal and legume based) in a cotton agroecosystem. Predators were collected from experimental field plots during each major crop development stage in 2017 and 2018, and PCR was used to estimate predator roles and responses to cover crop treatments. Cotton planted into a rye cover crop residue promoted unique predator communities in the early and mid-season as compared to no-cover fields. Correspondingly, we observed dissimilar prey consumption among cover crop treatments. While predators consumed incidental pests at high frequencies (e.g. aphids), predation on key pests by natural enemies in this system was lacking. The use of winter cover crops and reduced tillage practices increased the consumption of alternative prey by natural enemies on seedling cotton, encouraging high predator diversity that aligns temporally with potential early season pest outbreaks. Therefore, cover crops should be further integrated into integrated pest management strategies.


Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1035
Author(s):  
Mihkel Are ◽  
Tanel Kaart ◽  
Are Selge ◽  
Endla Reintam

The stability of the soil aggregates is an important soil quality indicator, as it affects the soil’s overall functionality. As the soil aggregates are highly affected by agricultural practices, it is essential to know how crops interact with the aggregation process. Therefore, for obtaining more knowledge, this research was conducted in Estonia in an organic crop rotation field experiment from 2012/2013 through 2015/2016 to study the effects of crops (potato → spring barley undersown with red clover → red clover → winter wheat → pea) under different treatments (TC—control; TW—winter cover crops; TW+M—TW with farmyard manure 40 Mg ha−1 per crop rotation). The results showed that in the topsoil (5–10 cm), the soil water-stable aggregate (WSA) content (determined by the wet sieving method) from highest to lowest was following: pea (61.7%), winter wheat (61.6%), spring barley (61.5%), red clover (59.3%), potato (57.1%); whereas in the subsoil (30–35 cm): potato (50.6%), pea (48.5%), red clover (47.9%), spring barley (47.7%), winter wheat (46.4%). Therefore, potato was a noticeable crop, as among the crops, it had the lowest WSA content in the topsoil, while highest in the subsoil. The results shown gave an assumption that the after-effects of some crops (foremost with pea) were noticeable in the soil properties during the following crop. In the topsoil, the differences between crops were significant among crops just for TW and TW+M treatments. In TW, potato was lower than spring barley and winter wheat, but not significantly lower than pea or red clover. In the subsoil, significant differences between crops were observed for TC and TW treatments: in TC, potato was just significantly greater than red clover (but similar to other crops), and in TW, significantly greater than winter wheat. Furthermore, in the topsoil the soil organic carbon (SOC) content was not significantly affected by crops, and the use of winter cover crops generally increased the SOC content while concurrently decreased the WSA content and the soil maximum water holding capacity. This was probably caused by the additional tillage operations which cancelled out the possible benefits for the soil aggregates. As a consequence of the constantly declining SOC content, caused by the weakened soil aggregates, the plant-available P and K contents, especially in the absence of manure applications, decreased as well, probably due to the combination of fixation and removal of plant biomass. Therefore, it is expected that by continuing this trend, the plant growing conditions decline, which in turn will have a negative effect for the aggregate formation and carbon sequestration, which are essential for plant growth.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 476d-476
Author(s):  
Gary R. Cline ◽  
Anthony F. Silvernail

A split-plot factorial experiment examined effects of tillage and winter cover crops on sweet corn in 1997. Main plots received tillage or no tillage. Cover crops consisted of hairy vetch, winter rye, or a mix, and N treatments consisted of plus or minus N fertilization. Following watermelon not receiving inorganic N, vetch, and mix cover cropsproduced total N yields of ≈90 kg/ha that were more than four times greater than those obtained with rye. However, vetch dry weight yields (2.7 mg/ha) were only about 60% of those obtained in previous years due to winter kill. Following rye winter cover crops, addition of ammonium nitrate to corn greatly increased (P < 0.05) corn yields and foliar N concentrations compared to treatments not receiving N. Following vetch, corn yields obtained in tilled treatments without N fertilization equaled those obtained with N fertilization. However, yields obtained from unfertilized no-till treatments were significantly (P < 0.05) lower than yields of N-fertilized treatments. Available soil N was significantly (P < 0.05) greater following vetch compared to rye after corn planting. No significant effects of tillage on sweet corn plant densities or yields were detected. It was concluded that no-tillage sweet corn was successful, and N fixed by vetch was able to sustain sweet corn production in tilled treatments but not in no-till treatments.In previous years normal, higher-yielding vetch cover crops were able to sustain sweet corn in both tilled and no-till treatments.


1958 ◽  
Vol 22 (2) ◽  
pp. 181-184 ◽  
Author(s):  
W. J. Flocker ◽  
J. A. Vomocil ◽  
M. T. Vittum

2021 ◽  
Vol 128 ◽  
pp. 126302
Author(s):  
Adelaide Perdigão ◽  
José L.S. Pereira ◽  
Nuno Moreira ◽  
Henrique Trindade ◽  
João Coutinho

2017 ◽  
Vol 60 (6) ◽  
pp. 1939-1955 ◽  
Author(s):  
Sangchul Lee ◽  
Ali M. Sadeghi ◽  
In-Young Yeo ◽  
Gregory W. McCarty ◽  
W. Dean Hively

Abstract. Winter cover crops (WCCs) have been widely implemented in the Coastal Plain of the Chesapeake Bay Watershed (CBW) due to their high effectiveness in reducing nitrate loads. However, future climate conditions (FCCs) are expected to exacerbate water quality degradation in the CBW by increasing nitrate loads from agriculture. Accordingly, the question remains whether WCCs are sufficient to mitigate increased nutrient loads caused by FCCs. In this study, we assessed the impacts of FCCs on WCC nitrate reduction efficiency in the Coastal Plain of the CBW using the Soil and Water Assessment Tool (SWAT). Three FCC scenarios (2085-2098) were prepared using general circulation models (GCMs), considering three Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) greenhouse gas emission scenarios. We also developed six representative WCC implementation scenarios based on the most commonly used planting dates and species of WCCs in this region. Simulation results showed that WCC biomass increased by ~58% under FCC scenarios due to climate conditions conducive to WCC growth. Prior to implementing WCCs, annual nitrate loads increased by ~43% under FCC scenarios compared to the baseline scenario (2001-2014). When WCCs were planted, annual nitrate loads were substantially reduced by ~48%, and WCC nitrate reduction efficiency was ~5% higher under FCC scenarios relative to the baseline scenario. The increase in WCC nitrate reduction efficiency varied with FCC scenario and WCC planting method. As CO2 concentrations were higher and winters were warmer under FCC scenarios, WCCs had greater biomass and thus demonstrated higher nitrate reduction efficiency. In response to FCC scenarios, the performance of less effective WCC practices (i.e., barley, wheat, and late planting) under the baseline scenario indicated a ~14% higher increase in nitrate reduction efficiency compared to WCC practices with greater effectiveness under the baseline scenario (i.e., rye and early planting) due to warmer temperatures. The SWAT simulation results indicated that WCCs were effective in mitigating nitrate loads accelerated by FCCs, suggesting the role of WCCs in mitigating nitrate loads will likely be even more important under FCCs. Keywords: Future climate conditions (FCCs), SWAT, Water quality, Winter cover crops (WCCs).


2016 ◽  
Vol 220 ◽  
pp. 226-235 ◽  
Author(s):  
Edmar I. Teixeira ◽  
Paul Johnstone ◽  
Emmanuel Chakwizira ◽  
John de Ruiter ◽  
Brendon Malcolm ◽  
...  

2016 ◽  
Vol 38 (4) ◽  
Author(s):  
RICARDO SFEIR DE AGUIAR ◽  
PAULO VICENTE CONTADOR ZACCHEO ◽  
CARMEN SILVIA VIEIRA JANEIRO NEVES ◽  
MARCELO SFEIR DE AGUIAR ◽  
FERNANDO TEIXEIRA DE OLIVEIRA

ABSTRACT The use of cover crops species may be an important strategy in the pursuit of sustainability of agroecosystems, considering benefits to soil, such as improvements of physical and chemical characteristics, and weed control. The objective of this study was to evaluate the effect of winter cover crops and other soil managements on chemical soil properties, on the cycle, on the production of the first cycle and on the fruit quality of banana cv. Nanicão Jangada in Andirá – PR, Brazil. The experiment was carried out in a commercial. Planting of banana suckers from the grower area occurred in the first half of March 2011, with a spacing of 2.40 m between rows and 1.90 m between plants. The experiment was designed in randomized blocks with four replications and six plants per plot. The six treatments were: black oat (Avenastrigosa Schreb), forage turnip (Raphanus sativus L. var. oleiferus), consortium of black oat and forage turnip, chicken litter, residues of banana plants, and bare ground. The evaluations were vegetative development and life cycle of banana plants, yield and quality of fruits, soil chemical characterstics, and fresh and dry mass of green manures. The results were submitted to ANOVA (F Test), and Tukey test at 5 % probability. Black oat and black oat with forage turnip consortium were superior in biomass production. Systems of soil management had no effect on the variables, except in the periods between planting and flowering and between planting and harvest, which were shorter in the treatment of soil management with crop residues, longer in the treatment with forage turnip, and intermediate in the other treatments.


Sign in / Sign up

Export Citation Format

Share Document