scholarly journals Allitol bioproduction by recombinant Escherichia coli with NADH regeneration system co-expressing Ribitol Dehydrogenase (RDH) and Formate Dehydrogenase (FDH) in individual or in fusion

Author(s):  
Xin Wen ◽  
Huibin Lin ◽  
Yilin Ren ◽  
Can Li ◽  
Chengjia Zhang ◽  
...  
2018 ◽  
Vol 4 ◽  
Author(s):  
Hinawi A.M. Hassanin ◽  
Mohammed A.A. Eassa ◽  
Bo Jiang

Coexpression of formate dehydrogenase (FDH) and ribitol dehydrogenase (RDH) in Escherichia coli was used for the synthesis of Allitol from D-psicose. FDH was coexpressed with RDH for continuous NADH regeneration. The results revealed that the optimum conditions for allitol production occurred at pH 7.0 and 30 °C. Allitol reached the maximum yield of 19.2 mg at 2.0% substrate concentration after 48 hours. Using D-psicose as a substrate, allitol was successfully produced using an engineered E. coli coexpressed with RDH and FDH.


RSC Advances ◽  
2018 ◽  
Vol 8 (53) ◽  
pp. 30512-30519 ◽  
Author(s):  
Jian-Xiu Li ◽  
Yan-Yan Huang ◽  
Xian-Rui Chen ◽  
Qi-Shi Du ◽  
Jian-Zong Meng ◽  
...  

Enhanced production of optical (S)-acetoin by a recombinant Escherichia coli whole-cell biocatalyst with NADH regeneration systems.


2021 ◽  
Vol 2 (9) ◽  
pp. 01-11
Author(s):  
Wenfa Ng

Interests remain in searching for cofactor regeneration system with higher efficiency at lower substrate cost. Glucose dehydrogenase (GDH) system has been dominant in NADH regeneration, but it only has a theoretical yield of one NADH per glucose molecule. This work sought to explore the utility of a two-step ethanol utilization pathway (EUP) in pathway-based NADH regeneration. The pathway runs from ethanol to acetaldehyde and to acetyl-CoA with each step generating one NADH, that together results in a higher theoretical yield of two NADH per ethanol molecule. In this project, anaerobic biotransformation of ketone (acetophenone or butanone) to alcohol by cpsADH from Candida parapsilosis was used as readout for evaluating relative efficacy and operating modes for EUP cofactor regeneration in Escherichia coli BL21 (DE3). Experiment tests validated that EUP was more efficient than GDH in NADH regeneration. Further, growing cell delivered higher biotransformation efficiency compared to resting cell due to the driving force generated by cell growth. Finally, preculture or cultivation in M9 + 10 g/L ethanol medium delivered higher biotransformation efficiency compared to LB medium. Overall, EUP could help regenerate NADH in support of a biocatalytic reaction, and is more efficient in cofactor regeneration than GDH.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1422
Author(s):  
Yaping Wang ◽  
Yanhong Peng ◽  
Xiaoyan Liu ◽  
Ronghua Zhou ◽  
Xianqing Liao ◽  
...  

An auto-inducing expression system was developed that could express target genes in S. marcescens MG1. Using this system, MG1 was constructed as a whole-cell biocatalyst to produce 2,3-butanediol/acetoin. Formate dehydrogenase (FDH) and 2,3-butanediol dehydrogenase were expressed together to build an NADH regeneration system to transform diacetyl to 2,3-butanediol. After fermentation, the extract of recombinant S. marcescens MG1ABC (pETDuet-bdhA-fdh) showed 2,3-BDH activity of 57.8 U/mg and FDH activity of 0.5 U/mg. And 27.95 g/L of 2,3-BD was achieved with a productivity of 4.66 g/Lh using engineered S. marcescens MG1(Pswnb+pETDuet-bdhA-fdh) after 6 h incubation. Next, to produce 2,3-butanediol from acetoin, NADH oxidase and 2,3-butanediol dehydrogenase from Bacillus subtilis were co-expressed to obtain a NAD+ regeneration system. After fermentation, the recombinant strain S. marcescens MG1ABC (pSWNB+pETDuet-bdhA-yodC) showed AR activity of 212.4 U/mg and NOX activity of 150.1 U/mg. We obtained 44.9 g/L of acetoin with a productivity of 3.74 g/Lh using S. marcescens MG1ABC (pSWNB+pETDuet-bdhA-yodC). This work confirmed that S. marcescens could be designed as a whole-cell biocatalyst for 2,3-butanediol and acetoin production.


2016 ◽  
Vol 109 ◽  
pp. 189-196 ◽  
Author(s):  
Ranjitha Singh ◽  
Raushan Kumar Singh ◽  
Sang-Yong Kim ◽  
Sujan Sigdel ◽  
Ji-Hyun Park ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2534 ◽  
Author(s):  
Xian Zhang ◽  
Manchi Zhu ◽  
Rumeng Han ◽  
Youxi Zhao ◽  
Kewei Chen ◽  
...  

9α-Hydroxy-4-androstene-3,17-dione (9-OH-AD) is one of the significant intermediates for the preparation of β-methasone, dexamethasone, and other steroids. In general, the key enzyme that enables the biotransformation of 4-androstene-3,17-dione (AD) to 9-OH-AD is 3-phytosterone-9α-hydroxylase (KSH), which consists of two components: a terminal oxygenase (KshA) and ferredoxin reductase (KshB). The reaction is carried out with the concomitant oxidation of NADH to NAD+. In this study, the more efficient 3-phytosterone-9α-hydroxylase oxygenase (KshC) from the Mycobacterium sp. strain VKM Ac-1817D was confirmed and compared with reported KshA. To evaluate the function of KshC on the bioconversion of AD to 9-OH-AD, the characterization of KshC and the compounded system of KshB, KshC, and NADH was constructed. The optimum ratio of KSH oxygenase to reductase content was 1.5:1. An NADH regeneration system was designed by introducing a formate dehydrogenase, further confirming that a more economical process for biological transformation from AD to 9-OH-AD was established. A total of 7.78 g of 9-OH-AD per liter was achieved through a fed-batch process with a 92.11% conversion rate (mol/mol). This enzyme-mediated hydroxylation method provides an environmentally friendly and economical strategy for the production of 9-OH-AD.


Sign in / Sign up

Export Citation Format

Share Document