scholarly journals Bruhat order on classical Weyl groups: minimal chains and covering relation

2005 ◽  
Vol 26 (5) ◽  
pp. 729-753 ◽  
Author(s):  
Federico Incitti
10.37236/1871 ◽  
2005 ◽  
Vol 11 (2) ◽  
Author(s):  
John R. Stembridge

It is a well-known theorem of Deodhar that the Bruhat ordering of a Coxeter group is the conjunction of its projections onto quotients by maximal parabolic subgroups. Similarly, the Bruhat order is also the conjunction of a larger number of simpler quotients obtained by projecting onto two-sided (i.e., "double") quotients by pairs of maximal parabolic subgroups. Each one-sided quotient may be represented as an orbit in the reflection representation, and each double quotient corresponds to the portion of an orbit on the positive side of certain hyperplanes. In some cases, these orbit representations are "tight" in the sense that the root system induces an ordering on the orbit that yields effective coordinates for the Bruhat order, and hence also provides upper bounds for the order dimension. In this paper, we (1) provide a general characterization of tightness for one-sided quotients, (2) classify all tight one-sided quotients of finite Coxeter groups, and (3) classify all tight double quotients of affine Weyl groups.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Soojin Cho ◽  
Kyoungsuk Park

International audience Alignments, crossings and inversions of signed permutations are realized in the corresponding permutation tableaux of type $B$, and the cycles of signed permutations are understood in the corresponding bare tableaux of type $B$. We find the relation between the number of alignments, crossings and other statistics of signed permutations, and also characterize the covering relation in weak Bruhat order on Coxeter system of type $B$ in terms of permutation tableaux of type $B$. De nombreuses statistiques importantes des permutations signées sont réalisées dans les tableaux de permutations ou ”bare” tableaux de type $B$ correspondants : les alignements, croisements et inversions des permutations signées sont réalisés dans les tableaux de permutations de type $B$ correspondants, et les cycles des permutations signées sont comprises dans les ”bare” tableaux de type $B$ correspondants. Cela nous mène à relier le nombre d’alignements et de croisements avec d’autres statistiques des permutations signées, et aussi de caractériser la relation de couverture dans l’ordre de Bruhat faible sur des systèmes de Coxeter de type $B$ en termes de tableaux de permutations de type $B$.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Weijia Wang

AbstractIn this paper, we investigate various properties of strong and weak twisted Bruhat orders on a Coxeter group. In particular, we prove that any twisted strong Bruhat order on an affine Weyl group is locally finite, strengthening a result of Dyer [Quotients of twisted Bruhat orders, J. Algebra163 (1994), 3, 861–879]. We also show that, for a non-finite and non-cofinite biclosed set 𝐵 in the positive system of an affine root system with rank greater than 2, the set of elements having a fixed 𝐵-twisted length is infinite. This implies that the twisted strong and weak Bruhat orders have an infinite antichain in those cases. Finally, we show that twisted weak Bruhat order can be applied to the study of the tope poset of an infinite oriented matroid arising from an affine root system.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
P. Gavrylenko ◽  
M. Semenyakin ◽  
Y. Zenkevich

Abstract We notice a remarkable connection between the Bazhanov-Sergeev solution of Zamolodchikov tetrahedron equation and certain well-known cluster algebra expression. The tetrahedron transformation is then identified with a sequence of four mutations. As an application of the new formalism, we show how to construct an integrable system with the spectral curve with arbitrary symmetric Newton polygon. Finally, we embed this integrable system into the double Bruhat cell of a Poisson-Lie group, show how triangular decomposition can be used to extend our approach to the general non-symmetric Newton polygons, and prove the Lemma which classifies conjugacy classes in double affine Weyl groups of A-type by decorated Newton polygons.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1060
Author(s):  
Enrico Celeghini ◽  
Manuel Gadella ◽  
Mariano A. del del Olmo

We introduce a multi-parameter family of bases in the Hilbert space L2(R) that are associated to a set of Hermite functions, which also serve as a basis for L2(R). The Hermite functions are eigenfunctions of the Fourier transform, a property that is, in some sense, shared by these “generalized Hermite functions”. The construction of these new bases is grounded on some symmetry properties of the real line under translations, dilations and reflexions as well as certain properties of the Fourier transform. We show how these generalized Hermite functions are transformed under the unitary representations of a series of groups, including the Weyl–Heisenberg group and some of their extensions.


2020 ◽  
Vol 29 (03) ◽  
pp. 2050004
Author(s):  
Hery Randriamaro

The Tutte polynomial is originally a bivariate polynomial which enumerates the colorings of a graph and of its dual graph. Ardila extended in 2007 the definition of the Tutte polynomial on the real hyperplane arrangements. He particularly computed the Tutte polynomials of the hyperplane arrangements associated to the classical Weyl groups. Those associated to the exceptional Weyl groups were computed by De Concini and Procesi one year later. This paper has two objectives: On the one side, we extend the Tutte polynomial computing to the complex hyperplane arrangements. On the other side, we introduce a wider class of hyperplane arrangements which is that of the symmetric hyperplane arrangements. Computing the Tutte polynomial of a symmetric hyperplane arrangement permits us to deduce the Tutte polynomials of some hyperplane arrangements, particularly of those associated to the imprimitive reflection groups.


2010 ◽  
Vol 197 ◽  
pp. 175-212
Author(s):  
Maria Chlouveraki

The Rouquier blocks of the cyclotomic Hecke algebras, introduced by Rouquier, are a substitute for the families of characters defined by Lusztig for Weyl groups, which can be applied to all complex reflection groups. In this article, we determine them for the cyclotomic Hecke algebras of the groups of the infinite seriesG(de, e, r), thus completing their calculation for all complex reflection groups.


Sign in / Sign up

Export Citation Format

Share Document