scholarly journals Constitutively active RhoA inhibits proliferation by retarding G1 to S phase cell cycle progression and impairing cytokinesis

2009 ◽  
Vol 88 (9) ◽  
pp. 495-507 ◽  
Author(s):  
Pierre Morin ◽  
Cristina Flors ◽  
Michael F. Olson
Blood ◽  
2011 ◽  
Vol 117 (4) ◽  
pp. 1260-1269 ◽  
Author(s):  
Jiangfang Wang ◽  
Emma L. Reuschel ◽  
Jason M. Shackelford ◽  
Lauren Jeang ◽  
Debra K. Shivers ◽  
...  

AbstractHIV-1 depends on host-cell resources for replication, access to which may be limited to a particular phase of the cell cycle. The HIV-encoded proteins Vpr (viral protein R) and Vif (viral infectivity factor) arrest cells in the G2 phase; however, alteration of other cell-cycle phases has not been reported. We show that Vif drives cells out of G1 and into the S phase. The effect of Vif on the G1-to-S transition is distinct from its effect on G2, because G2 arrest is Cullin5-dependent, whereas the G1-to-S progression is Cullin5-independent. Using mass spectrometry, we identified 2 novel cellular partners of Vif, Brd4 and Cdk9, both of which are known to regulate cell-cycle progression. We confirmed the interaction of Vif and Cdk9 by immunoprecipitation and Western blot, and showed that small interfering RNAs (siRNAs) specific for Cdk9 inhibit the Vif-mediated G1-to-S transition. These data suggest that Vif regulates early cell-cycle progression, with implications for infection and latency.


2008 ◽  
Vol 28 (10) ◽  
pp. 3190-3197 ◽  
Author(s):  
Angelique W. Whitehurst ◽  
Rosalyn Ram ◽  
Latha Shivakumar ◽  
Boning Gao ◽  
John D. Minna ◽  
...  

ABSTRACT Multiple molecular lesions in human cancers directly collaborate to deregulate proliferation and suppress apoptosis to promote tumorigenesis. The candidate tumor suppressor RASSF1A is commonly inactivated in a broad spectrum of human tumors and has been implicated as a pivotal gatekeeper of cell cycle progression. However, a mechanistic account of the role of RASSF1A gene inactivation in tumor initiation is lacking. Here we have employed loss-of-function analysis in human epithelial cells for a detailed investigation of the contribution of RASSF1 to cell cycle progression. We found that RASSF1A has dual opposing regulatory connections to G1/S phase cell cycle transit. RASSF1A associates with the Ewing sarcoma breakpoint protein, EWS, to limit accumulation of cyclin D1 and restrict exit from G1. Surprisingly, we found that RASSF1A is also required to restrict SCFβTrCP activity to allow G/S phase transition. This restriction is required for accumulation of the anaphase-promoting complex/cyclosome (APC/C) inhibitor Emi1 and the concomitant block of APC/C-dependent cyclin A turnover. The consequence of this relationship is inhibition of cell cycle progression in normal epithelial cells upon RASSF1A depletion despite elevated cyclin D1 concentrations. Progression to tumorigenicity upon RASSF1A gene inactivation should therefore require collaborating genetic aberrations that bypass the consequences of impaired APC/C regulation at the G1/S phase cell cycle transition.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3350-3350
Author(s):  
Stephen J. Orr ◽  
Rong Wang ◽  
Nicholas C. Lea ◽  
Constantinos Chronis ◽  
Arun K. Ramani ◽  
...  

Abstract We identified a G0→G1 commitment point in primary human T cells that controls entry into the cell cycle from quiescence. We demonstrated proof of principle that cellular pathways regulating cell cycle progression and effector functions that normally coincide during CD3/CD28 stimulation can be uncoupled experimentally. We have now used systems biology approaches to identify nuclear protein networks in primary human T cells that are regulated during the transition from quiescence into the cell cycle (G0→G1→S-phase). First we sequenced proteins that became bound to chromatin & nuclear matrix in G1 but were not bound in G0 and vice versa by mass spectrometry. Bioinformatic analysis identified 76 proteins specifically bound in G0 not G1 and 254 bound in G1 not G0. 179 of the 254 proteins bound in G1 not G0 (i.e. dynamic protein changes) were mapped to the 55,000 human protein interaction dataset. These are involved in numerous cellular functions, including epigenetics, transcription, RNA splicing & transport, and others. Cell cycle regulated chromatin/matrix binding of a subset was verified by western blotting (2/2 bound in G0 not G1 and 22/23 bound in G1 not G0). One of the proteins induced and bound in G1 was SAP145 (SF3B2). This is a component of the ubiquitous SF3b RNA splicing complex, involved in both major (U2-type) and minor (U12-type) spliceosomes. Since SAP145 is induced during G1 we investigated whether there was a role for SAP145 in regulating cell cycle progression. T cells depleted of SAP145 by siRNA enter G1 from G0 but progress poorly through S phase and die, probably by apoptosis. The same occurs if another component of the SF3B complex, SAP49 (SF3B4) is depleted with siRNA, indicating that the effect is due to depleting the complex rather than the individual SF3B protein. Proteins that are induced during G1 by CD3/CD28 stimulation e.g. cyclin D3, Cdc6 and cdc2 are produced normally when SAP145 is depleted, suggesting that their pre-mRNAs are spliced normally. In contrast, the expression of p107 and cyclin A2 are reduced markedly when SAP145 is depleted. Therefore, a systems biology approach to analysing cell cycle transitions identifies the splicing protein, SAP145 as rate-limiting for the G1 →S phase cell cycle transition but not for the transition from G0→G1.


Plant Methods ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 5 ◽  
Author(s):  
Edit Kotogány ◽  
Dénes Dudits ◽  
Gábor V Horváth ◽  
Ferhan Ayaydin

2002 ◽  
Vol 22 (12) ◽  
pp. 4309-4318 ◽  
Author(s):  
Latha Shivakumar ◽  
John Minna ◽  
Toshiyuki Sakamaki ◽  
Richard Pestell ◽  
Michael A. White

ABSTRACT The RASSF1A locus at 3p21.3 is epigenetically inactivated at high frequency in a variety of solid tumors. Expression of RASSF1A is sufficient to revert the tumorigenicity of human cancer cell lines. We show here that RASSF1A can induce cell cycle arrest by engaging the Rb family cell cycle checkpoint. RASSF1A inhibits accumulation of native cyclin D1, and the RASSF1A-induced cell cycle arrest can be relieved by ectopic expression of cyclin D1 or of other downstream activators of the G1/S-phase transition (cyclin A and E7). Regulation of cyclin D1 is responsive to native RASSF1A activity, because RNA interference-mediated downregulation of endogenous RASSF1A expression in human epithelial cells results in abnormal accumulation of cyclin D1 protein. Inhibition of cyclin D1 by RASSF1A occurs posttranscriptionally and is likely at the level of translational control. Rare alleles of RASSF1A, isolated from tumor cell lines, encode proteins that fail to block cyclin D1 accumulation and cell cycle progression. These results strongly suggest that RASSF1A is an important human tumor suppressor protein acting at the level of G1/S-phase cell cycle progression.


Sign in / Sign up

Export Citation Format

Share Document