Molecular approaches towards development of purified natural products and their structurally known derivatives as efficient anti-cancer drugs: Current trends

2013 ◽  
Vol 714 (1-3) ◽  
pp. 239-248 ◽  
Author(s):  
Santu Kumar Saha ◽  
Anisur Rahman Khuda-Bukhsh
2014 ◽  
Vol 9 (11) ◽  
pp. 1934578X1400901 ◽  
Author(s):  
Jabeena Khazir ◽  
Darren L. Riley ◽  
Lynne A. Pilcher ◽  
Pieter De-Maayer ◽  
Bilal Ahmad Mir

This review attempts to portray the discovery and development of anticancer agents/drugs from diverse natural sources. Natural molecules from these natural sources including plants, microbes and marine organisms have been the basis of treatment of human diseases since the ancient times. Compounds derived from nature have been important sources of new drugs and also serve as templates for synthetic modification. Many successful anti-cancer drugs currently in use are naturally derived or their analogues and many more are under clinical trials. This review aims to highlight the invaluable role that natural products have played, and continue to play, in the discovery of anticancer agents.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaojie Tan ◽  
Jiahui Fu ◽  
Zhaoxin Yuan ◽  
Lingjuan Zhu ◽  
Leilei Fu

Objectives: Cancer is well-known as a collection of diseases of uncontrolled proliferation of cells caused by mutated genes which are generated by external or internal factors. As the mechanisms of cancer have been constantly revealed, including cell cycle, proliferation, apoptosis and so on, a series of new emerging anti-cancer drugs acting on each stage have also been developed. It is worth noting that natural products are one of the important sources for the development of anti-cancer drugs. To the best of our knowledge, there is not any database summarizing the relationships between natural products, compounds, molecular mechanisms, and cancer types.Materials and methods: Based upon published literatures and other sources, we have constructed an anti-cancer natural product database (ACNPD) (http://www.acnpd-fu.com/). The database currently contains 521 compounds, which specifically refer to natural compounds derived from traditional Chinese medicine plants (derivatives are not considered herein). And, it includes 1,593 molecular mechanisms/signaling pathways, covering 10 common cancer types, such as breast cancer, lung cancer and cervical cancer.Results: Integrating existing data sources, we have obtained a large amount of information on natural anti-cancer products, including herbal sources, regulatory targets and signaling pathways. ACNPD is a valuable online resource that illustrates the complex pharmacological relationship between natural products and human cancers.Conclusion: In summary, ACNPD is crucial for better understanding of the relationships between traditional Chinese medicine (TCM) and cancer, which is not only conducive to expand the influence of TCM, but help to find more new anti-cancer drugs in the future.


2020 ◽  
Vol 21 (11) ◽  
pp. 1028-1041 ◽  
Author(s):  
Saleh A. Almatroodi ◽  
Ahmad Almatroudi ◽  
Mohammed A. Alsahli ◽  
Amjad A. Khan ◽  
Arshad H. Rahmani

Background: Cancer is the leading cause of death worldwide and the current mode of cancer treatment causes side effects on normal cells and are still the key challenges in its’ treatment. However, natural products or active compounds of medicinal plants have shown to be safe, affordable, and effective in diseases cure. Methods: In this context, scientific studies evidence the health-promoting effects of natural products, which work through its anti-oxidant, anti-inflammatory, and anti-cancer activity. Thymoquinone (TM), a predominant active compound of Nigella sativa, has confirmed anti-neoplastic activity through its ability to regulate various genetic pathways. In addition, thymoquinone has established anti-cancerous effects through killing of various cancerous cells,and inhibiting the initiation, migration, invasion, and progression of the cancer. The anti-cancer effects of TM are chiefly mediated via regulating various cell signaling pathways such as VEGF, bcl2/bax ratio, p53, NF-kB, and oncogenes. Results: The anti-cancer drugs have limitations in efficacy and also causes adverse side effects on normal cells. The combination of anti-cancer drugs and thymoquinone improves the efficacy of drugs which is evident by decrease resistance to drugs and regulation of various cell signaling pathways. Moreover, combination of anti-cancer drugs as well as thymoquinone shows synergistic effect on killing of cancer cells and cells viability. Thus, TM, in combination with anti-cancer drugs, can be a good strategy in the management of various types of cancer. Conclusion: In this review article, we deliver an outline of thymoquinone role in cancer inhibition and prevention of cancer-based on in vivo and in vitro studies. Further studies on thymoquinone based on clinical trials are highly required to explore the benefits of thymoquinone in cancer management.


2019 ◽  
Vol 19 (2) ◽  
pp. 194-203 ◽  
Author(s):  
Xiaofeng Li ◽  
Xiaoxu Li ◽  
Yinghong Li ◽  
Chunyan Yu ◽  
Weiwei Xue ◽  
...  

Background:Despite the substantial contribution of natural products to the FDA drug approval list, the discovery of anti-cancer drugs from the huge amount of species on the planet remains looking for a needle in a haystack. Objective: Drug-productive clusters in the phylogenetic tree are thus proposed to narrow the searching scope by focusing on much smaller amount of species within each cluster, which enable prioritized and rational bioprospecting for novel drug-like scaffolds. However, the way anti-cancer nature-derived drugs distribute in phylogenetic tree has not been reported, and it is oversimplified to just focus anti-cancer drug discovery on the drug-productive clusters, since the number of species in each cluster remains too large to be managed.Objective:Drug-productive clusters in the phylogenetic tree are thus proposed to narrow the searching scope by focusing on much smaller amount of species within each cluster, which enable prioritized and rational bioprospecting for novel drug-like scaffolds. However, the way anti-cancer nature-derived drugs distribute in phylogenetic tree has not been reported, and it is oversimplified to just focus anti-cancer drug discovery on the drug-productive clusters, since the number of species in each cluster remains too large to be managed.Methods:In this study, 260 anti-cancer drugs approved in the past 70 years were comprehensively analyzed by hierarchical clustering of phylogenetic distribution.Results:207 out of these 260 drugs were derived from or inspired by the natural products isolated from 58 species. Phylogenetic distribution of those drugs further revealed that nature-derived anti-cancer drugs originated mostly from drug-productive families that tend to be clustered rather than scattered on the phylogenetic tree. Moreover, based on their productivity, drug-producing species were categorized into productive (CPS), newly emerging (CNS) and lessproductive (CLS). Statistical significances in druglikeness between drugs from CPS and CLS were observed, and drugs from CNS were found to share similar drug-like properties to those from CPS.Conclusion:This finding indicated a great raise in drug approval standard, which suggested us to focus bioprospecting on the species yielding multiple drugs and keeping productive for long period of time.


1993 ◽  
Vol 55 (1) ◽  
pp. 43-46
Author(s):  
Jun YOSHIDA ◽  
Juichiro NAKAYAMA ◽  
Nobuyuki SHIMIZU ◽  
Shonosuke NAGAE ◽  
Yoshiaki HORI

2019 ◽  
Vol 24 (32) ◽  
pp. 3829-3841 ◽  
Author(s):  
Lakshmanan Loganathan ◽  
Karthikeyan Muthusamy

Worldwide, colorectal cancer takes up the third position in commonly detected cancer and fourth in cancer mortality. Recent progress in molecular modeling studies has led to significant success in drug discovery using structure and ligand-based methods. This study highlights aspects of the anticancer drug design. The structure and ligand-based drug design are discussed to investigate the molecular and quantum mechanics in anti-cancer drugs. Recent advances in anticancer agent identification driven by structural and molecular insights are presented. As a result, the recent advances in the field and the current scenario in drug designing of cancer drugs are discussed. This review provides information on how cancer drugs were formulated and identified using computational power by the drug discovery society.


2020 ◽  
Vol 20 (9) ◽  
pp. 779-787
Author(s):  
Kajal Ghosal ◽  
Christian Agatemor ◽  
Richard I. Han ◽  
Amy T. Ku ◽  
Sabu Thomas ◽  
...  

Chemotherapy employs anti-cancer drugs to stop the growth of cancerous cells, but one common obstacle to the success is the development of chemoresistance, which leads to failure of the previously effective anti-cancer drugs. Resistance arises from different mechanistic pathways, and in this critical review, we focus on the Fanconi Anemia (FA) pathway in chemoresistance. This pathway has yet to be intensively researched by mainstream cancer researchers. This review aims to inspire a new thrust toward the contribution of the FA pathway to drug resistance in cancer. We believe an indepth understanding of this pathway will open new frontiers to effectively treat drug-resistant cancer.


2006 ◽  
Vol 1 (3) ◽  
pp. 327-346 ◽  
Author(s):  
Stephen Ralph ◽  
Pauline Low ◽  
Langfeng Dong ◽  
Alfons Lawen ◽  
Jiri Neuzil

Sign in / Sign up

Export Citation Format

Share Document