Biallelic variants in the CACNA1A gene resulting in infantile epileptic encephalopathy, global developmental delay and cortical visual impairment

2017 ◽  
Vol 21 ◽  
pp. e59
Author(s):  
V.M.Y. Wong-Spracklen ◽  
O. Spasic-Boskovic ◽  
K. Baker ◽  
A. Maw
Author(s):  
SE Buerki ◽  
GA Horwath ◽  
MI Van Allen ◽  
A Datta ◽  
C Boelman ◽  
...  

Background: KCNQ2 abnormalities were described in infants with benign familial neonatal seizures (BFNS) and epileptic encephalopathy (EE). Associated features possibly include abnormal neuroimaging findings such as hypomyelination and/or T2 high signal of basal ganglia. Methods: This report describes 4 infants carrying different heterozygous KCNQ2 variants and 2 infants with 20q13.33 deletions encompassing KCNQ2 gene. Results: The different KCNQ2 mutations led to EE in 3 patients and included a novel de novo missense variant, p.Arg201Cys/c.601C>T, in an infant with severe EE and global developmental delay, hyperkinetic movement disorder, autonomic dysfunction with chronic hypoventilation, apnea, low GABA levels in CSF, and hypomyelination. She died at age 3 years of respiratory failure. One patient with BFNS and normal MRI has a previously reported c.508delG frame shift mutation in KCNQ2. Of the two de novo 22q13.33 deletions (1.2Mb versus 254.1 Kb) the larger caused a more severe phenotype, including focal epilepsy from infancy until 4 years, moderate developmental delay and diffuse brain volume loss. Conclusions: Along with varied epilepsy phenotypes and neuroimaging findings KCNQ abnormalities were associated with severe autonomic dysfunction and reduced CSF GABA levels. This might have further treatment implications, besides that the altered potassium channel function itself presents a therapeutic target.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (6) ◽  
pp. e1009608
Author(s):  
Jia-Hui Sun ◽  
Jiang Chen ◽  
Fernando Eduardo Ayala Valenzuela ◽  
Carolyn Brown ◽  
Diane Masser-Frye ◽  
...  

The X-linked GRIA3 gene encodes the GLUA3 subunit of AMPA-type glutamate receptors. Pathogenic variants in this gene were previously reported in neurodevelopmental diseases, mostly in male patients but rarely in females. Here we report a de novo pathogenic missense variant in GRIA3 (c.1979G>C; p. R660T) identified in a 1-year-old female patient with severe epilepsy and global developmental delay. When exogenously expressed in human embryonic kidney (HEK) cells, GLUA3_R660T showed slower desensitization and deactivation kinetics compared to wildtype (wt) GLUA3 receptors. Substantial non-desensitized currents were observed with the mutant but not for wt GLUA3 with prolonged exposure to glutamate. When co-expressed with GLUA2, the decay kinetics were similarly slowed in GLUA2/A3_R660T with non-desensitized steady state currents. In cultured cerebellar granule neurons, miniature excitatory postsynaptic currents (mEPSCs) were significantly slower in R660T transfected cells than those expressing wt GLUA3. When overexpressed in hippocampal CA1 neurons by in utero electroporation, the evoked EPSCs and mEPSCs were slower in neurons expressing R660T mutant compared to those expressing wt GLUA3. Therefore our study provides functional evidence that a gain of function (GoF) variant in GRIA3 may cause epileptic encephalopathy and global developmental delay in a female subject by enhancing synaptic transmission.


2020 ◽  
Author(s):  
Chiara Klöckner ◽  
Heinrich Sticht ◽  
Pia Zacher ◽  
Bernt Popp ◽  
Dewi P. Bakker ◽  
...  

Purpose This study aims to provide the first comprehensive description of the phenotypic and genotypic spectrum of SNAP25 developmental and epileptic encephalopathy (SNAP25-DEE) by reviewing newly identified and previously reported individuals. Methods Individuals harboring heterozygous missense or truncating variants in SNAP25 were assembled through a collaboration with international colleagues, matchmaking platforms and literature review. For each individual, detailed phenotyping, classification and structural modeling of the identified variant was performed. Results The cohort comprises 20 individuals with (likely) pathogenic variants in SNAP25. Intellectual disability and early-onset epilepsy were identified as the core symptoms of SNAP25-DEE, with recurrent findings of movement disorders, cortical visual impairment and brain atrophy. Structural modeling for all variants predicted possible functional defects concerning SNAP25 or impaired interaction with other components of the SNARE complex. Conclusion We provide a first comprehensive description of SNAP25-DEE with intellectual disability and early onset epilepsy mostly occurring before the age of two years. Other recurrent phenotypes such as movement disorders, cortical visual impairment and brain atrophy show an overlap to other genes encoding components of the SNARE complex such as STXBP1 or VAMP2. Thus, these findings advance the concept of a group of neurodevelopmental disorders that may be termed SNAREopathies.


2019 ◽  
Vol 5 (6) ◽  
pp. e367 ◽  
Author(s):  
Shibalik Misra ◽  
Greg Peters ◽  
Elizabeth Barnes ◽  
Simone Ardern-Holmes ◽  
Richard Webster ◽  
...  

ObjectiveThe present study investigated the diagnostic yield of array comparative genomic hybridization (aCGH) in a large cohort of children with diverse neurologic disorders as seen in child neurology practice to test whether pathogenic copy number variants (CNVs) were more likely to be detected in specific neurologic phenotypes.MethodsA retrospective cross-sectional analysis was performed on 555 children in whom a genetic etiology was suspected and who underwent whole-genome aCGH testing between 2006 and 2012. Neurologic phenotyping was performed using hospital medical records. An assessment of pathogenicity was made for each CNV, based on recent developments in the literature.ResultsForty-seven patients were found to carry a pathogenic CNV, giving an overall diagnostic yield of 8.59%. Certain phenotypes predicted for the presence of a pathogenic CNV, including developmental delay (odds ratio [OR] 3.69 [1.30–10.51]), cortical visual impairment (OR 2.73 [1.18–6.28]), dysmorphism (OR 2.75 [1.38–5.50]), and microcephaly (OR 2.16 [1.01–4.61]). The combination of developmental delay/intellectual disability with dysmorphism and abnormal head circumference was also predictive for a pathogenic CNV (OR 2.86 [1.02–8.00]). For every additional clinical feature, there was an increased likelihood of detecting a pathogenic CNV (OR 1.18 [1.01–1.38]).ConclusionsThe use of aCGH led to a pathogenic finding in 8.59% of patients. The results support the use of aCGH as a first tier investigation in children with diverse neurologic disorders, although whole-genome sequencing may replace aCGH as the detection method in the future. In particular, the yield was increased in children with developmental delay, dysmorphism, cortical visual impairment, and microcephaly.


2020 ◽  
Author(s):  
Soo Yeon Kim ◽  
YoungKyu Shim ◽  
Young Joon Ko ◽  
Soojin Park ◽  
Se Song Jang ◽  
...  

Abstract Background GNAO1 encephalopathy is a rare neurodevelopmental disorder characterized by distinct movement presentations and early onset epileptic encephalopathy. Here, we report the in-depth phenotyping of genetically confirmed patients with GNAO1 encephalopathy, focusing on movement presentations. Results Six patients who participated in Korean Undiagnosed Disease Program were diagnosed to have pathogenic or likely pathogenic variants in GNAO1 using whole exome sequencing. All medical records and personal video clips were analyzed with a literature review. Three of the 6 patients were male. Mean follow-up duration was 39 months (range, 7–78 months) and age at last examination was 8.0 years (range, 3.3–16.9 years). Initial complaints were hypotonia or developmental delay in 5 and right-hand clumsiness in 1 patient, which were noticed at 20 months of age on average (range, 0–75 months). All patients showed global developmental delay and 4 had severely retarded development. Five patients (5/6, 83.3%) had many different movement symptoms with various onset and progression. The symptoms included stereotyped hands movement, non-epileptic myoclonus, dyskinesia, dystonia and choreoathetosis. Whole exome sequencing identified 6 different variants in GNAO1. Three were novel de novo variants and atypical presentation was noted in a patient. One variant turned out to be inherited from patient’s mother who had mosaic variant. Distinct phenotypes in patients with variant p.Glu246Lys and p.Arg209His were elucidated by in-depth phenotyping and literature review. Conclusions We reported 6 patients with GNAO1 encephalopathy showing an extremely diverse clinical spectrum on video. Some characteristic movement features identified by careful inspection may also provide important diagnostic insight and practice guidelines.


2020 ◽  
Author(s):  
Soo Yeon Kim ◽  
YoungKyu Shim ◽  
Young Joon Ko ◽  
Soojin Park ◽  
Se Song Jang ◽  
...  

Abstract Background: GNAO1 encephalopathy is a rare neurodevelopmental disorder characterized by distinct movement presentations and early onset epileptic encephalopathy. Here, we report the in-depth phenotyping of genetically confirmed patients with GNAO1 encephalopathy, focusing on movement presentations.Results: Six patients who participated in Korean Undiagnosed Disease Program were diagnosed to have pathogenic or likely pathogenic variants in GNAO1 using whole exome sequencing. All medical records and personal video clips were analyzed with a literature review. Three of the 6 patients were male. Median follow-up duration was 41 months (range, 7–78 months) and age at last examination was 7.4 years (range, 3.3–16.9 years). Initial complaints were hypotonia or developmental delay in 5 and right-hand clumsiness in 1 patient, which were noticed at median age of 3 months (range, 0–75 months). All patients showed global developmental delay and 4 had severely retarded development. Five patients (5/6, 83.3%) had many different movement symptoms with various onset and progression. The symptoms included stereotyped hands movement, non-epileptic myoclonus, dyskinesia, dystonia and choreoathetosis. Whole exome sequencing identified 6 different variants in GNAO1. Three were novel de novo variants and atypical presentation was noted in a patient. One variant turned out to be inherited from patient’s mother who had mosaic variant. Distinct and characteristics movement phenotypes in patients with variant p.Glu246Lys and p.Arg209His were elucidated by in-depth phenotyping and literature review. Conclusions: We reported 6 patients with GNAO1 encephalopathy showing an extremely diverse clinical spectrum on video. Some characteristic movement features identified by careful inspection may also provide important diagnostic insight and practice guidelines.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Soo Yeon Kim ◽  
YoungKyu Shim ◽  
Young Joon Ko ◽  
Soojin Park ◽  
Se Song Jang ◽  
...  

Abstract Background GNAO1 encephalopathy is a rare neurodevelopmental disorder characterized by distinct movement presentations and early onset epileptic encephalopathy. Here, we report the in-depth phenotyping of genetically confirmed patients with GNAO1 encephalopathy, focusing on movement presentations. Results Six patients who participated in Korean Undiagnosed Disease Program were diagnosed to have pathogenic or likely pathogenic variants in GNAO1 using whole exome sequencing. All medical records and personal video clips were analyzed with a literature review. Three of the 6 patients were male. Median follow-up duration was 41 months (range 7–78 months) and age at last examination was 7.4 years (range 3.3–16.9 years). Initial complaints were hypotonia or developmental delay in 5 and right-hand clumsiness in 1 patient, which were noticed at median age of 3 months (range 0–75 months). All patients showed global developmental delay and 4 had severely retarded development. Five patients (5/6, 83.3%) had many different movement symptoms with various onset and progression. The symptoms included stereotyped hands movement, non-epileptic myoclonus, dyskinesia, dystonia and choreoathetosis. Whole exome sequencing identified 6 different variants in GNAO1. Three were novel de novo variants and atypical presentation was noted in a patient. One variant turned out to be inherited from patient’s mother who had mosaic variant. Distinct and characteristics movement phenotypes in patients with variant p.Glu246Lys and p.Arg209His were elucidated by in-depth phenotyping and literature review. Conclusions We reported 6 patients with GNAO1 encephalopathy showing an extremely diverse clinical spectrum on video. Some characteristic movement features identified by careful inspection may also provide important diagnostic insight and practice guidelines.


2018 ◽  
Vol 9 (1) ◽  
pp. 203-208 ◽  
Author(s):  
Salleh N. Ehaideb ◽  
Majed J. Al-Bu Ali ◽  
Jaafer J. Al-obaid ◽  
Kareemah M. Aljassim ◽  
Majid Alfadhel

AbstractTheWWOXgene has a WW domain containing oxidoreductase, which is located at the common fragile site FRA16D at chromosome 16q23.WWOXis a tumor suppressor gene that has been associated with several types of cancer such as hepatic, breast, lung, prostate, gastric, and ovarian. Recently WWOX has been implicated in epilepsy, where studies show homozygous loss-of-function mutation lead to early-infantile epileptic encephalopathy, spinocerebellar ataxia, intractable seizures and developmental delay, and early lethal microcephaly syndrome with epilepsy. Here we investigate two consanguineous Saudi families and we identified three probands with epileptic encephalopathy. Whole exome sequencing revealed a novel homozygous mutation in theWWOXgene in one proband. In addition, we identified a previously reportedWWOXmutation in two probands. Later on these findings were confirmed with Sanger sequencing. The underlying mechanism on how WWOX mutations lead to seizure remains elusive. To date very fewWWOXmutations have been associated with neurological disorder and our newly identified mutations support the notion that WWOX play an important role in neurons and will aid in better diagnosis and genetic counseling.


Sign in / Sign up

Export Citation Format

Share Document