Aryne cycloaddition reaction as a facile and mild modification method for design of electrode materials for high-performance symmetric supercapacitor

2021 ◽  
Vol 369 ◽  
pp. 137667
Author(s):  
Elizaveta Sviridova ◽  
Min Li ◽  
Alexandre Barras ◽  
Ahmed Addad ◽  
Mekhman S. Yusubov ◽  
...  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Pengfei Hao ◽  
Yanjie Yi ◽  
Youming Li ◽  
Yi Hou

Abstract A green and economically viable route without any additional activation agents and templates has been developed to synthesize biomass-derived nanoporous carbon for superior electric double-layer capacitors via direct pyrolysis of dried black liquor powders, which is the main waste in pulping and paper-making industry. The resulting carbon materials present hierarchical porosity and moderate specific surface area of 1134  m 2 g − 1 {\text{m}^{2}}\hspace{0.1667em}{\text{g}^{-1}} , as well as multi-heteroatoms co-doping such as N, S, Na and K, which exist originally in black liquor. When evaluated as electrode materials for supercapacitors in 6 M KOH aqueous electrolyte, the-prepared carbon samples deliver a significantly high gravimetric capacitance of 331  F g − 1 \text{F}\hspace{0.1667em}{\text{g}^{-1}} at 0.5  A g − 1 \text{A}\hspace{0.1667em}{\text{g}^{-1}} in a three-electrode system. Moreover, the fabricated symmetric supercapacitor also possesses a gravimetric capacitance of 211  F g − 1 \text{F}\hspace{0.1667em}{\text{g}^{-1}} at 0.5  A g − 1 \text{A}\hspace{0.1667em}{\text{g}^{-1}} , with an impressive long-term cycling stability of 92 % capacitance retention after 3000 cycles. This work explores a suitable and scalable approach for mass production of high-performance electrode materials with industrial wastes on the base of cost-efficiency and environment-friendship.


2020 ◽  
Vol 10 (3) ◽  
pp. 1081 ◽  
Author(s):  
Jie Deng ◽  
Zhu Peng ◽  
Zhe Xiao ◽  
Shuang Song ◽  
Hui Dai ◽  
...  

Carbon-based materials, as some of the most important electrode materials for supercapacitors (SC), have spurred enormous attentions. Now, it is highly desirable but remains an open challenge to design stable and high-capacity carbons for further enhancing supercapacitive function. Here, a facile chemical activation recipe is introduced to develop biomass-derived functional carbons using cheap and abundant natural resources, anthracite, as the heteroatom-rich carbon sources, and potassium hydroxide (KOH) as activator. These porous carbons have high BET surface areas of roughly 2814 m2 g−1, large pore volumes of up to 1.531 cm3 g−1, and a high porosity that combines micro- and small-sized mesopores. The optimal nanocarbon features two additional outstanding virtues: an appropriate N-doping level (2.77%) and a uniform pore size distribution in the narrow range of 1–4 nm. Synergy of the above unique structural traits and desirable chemical composition endows resultant samples with the much boosted supercapacitive property with remarkable specific capacitance at varied current densities (e.g., 325 F g−1 at 0.5 A/g), impressive energy/power density, and long cycling stability over 5000 cycles at 10 A g−1 (92% capacity retention). When constructing the symmetric supercapacitor utilizing a common neutral Na2SO4 electrolyte that can strongly circumvent the corrosion effect occurring in the strong acid/alkaline solutions, both an elevated operation voltage at 1.8 V and a fascinating energy density of 23.5 Wh kg−1 are attained. The current study paves the way to explore the stable, efficient, and high-voltage SC assembled by the anthracite-derived porous doped nanocarbons for a wide spectrum of applications like automobiles, vehicle devices, and so on.


NANO ◽  
2017 ◽  
Vol 12 (08) ◽  
pp. 1750103 ◽  
Author(s):  
Guofu Ma ◽  
Wei Tang ◽  
Kanjun Sun ◽  
Zhiguo Zhang ◽  
Enke Feng ◽  
...  

Coprinus comatus-based nitrogen-doped activated carbon (N-ACC) is prepared by chemical activation and nitrogen-doped methods. The N-ACC possesses large specific surface areas (976.96[Formula: see text]m2[Formula: see text]g[Formula: see text]), high nitrogen contents (11.53[Formula: see text]wt.%), and super hydrophilicity. As electrode material for supercapacitors, the N-ACC shows remarkable electrochemical performance, such as 346[Formula: see text]F[Formula: see text]g[Formula: see text] maximum specific capacitance at a current density of 1[Formula: see text]A[Formula: see text]g[Formula: see text], which retains 260[Formula: see text]F[Formula: see text]g[Formula: see text] even at a high current density of 10[Formula: see text]A[Formula: see text]g[Formula: see text] (about 75% capacitance retention) in 2[Formula: see text]M KOH aqueous electrolyte. The assembled N-ACC//N-ACC symmetric supercapacitor exhibits energy density of 14.63[Formula: see text]Wh[Formula: see text]kg[Formula: see text] at power density of 810[Formula: see text]W kg[Formula: see text], and excellent cycling stability with 92% specific capacitance retention after 10000 cycles in the voltage range 0–1.8[Formula: see text]V in 0.5[Formula: see text]M Na2SO4 aqueous solution. These results indicate that the N-ACC as electrode materials can be used for high performance supercapacitors.


2021 ◽  
Author(s):  
Yingjie Su ◽  
Zhenjie Lu ◽  
Junxia Cheng ◽  
Xuefei Zhao ◽  
Xingxing Chen ◽  
...  

Development of high-efficient and low-cost heteroatom-doped porous carbon electrode is vitally important for high-performance supercapacitors. Herein, waste phenolic resin-based insulation boards, which naturally contain N and O elements, were deliberated...


2018 ◽  
Vol 11 (6) ◽  
pp. 1595-1602 ◽  
Author(s):  
Karthikeyan Krishnamoorthy ◽  
Parthiban Pazhamalai ◽  
Sang-Jae Kim

A symmetric supercapacitor constructed using two dimensional siloxene sheets in an ionic liquid electrolyte exhibits high areal capacitance and energy density.


Author(s):  
Tingting Xia ◽  
Chengfei Xu ◽  
Pengfei Dai ◽  
Xiaoyun Li ◽  
Riming Lin ◽  
...  

Three-dimensional (3D) conductive polymers are promising conductive matrices for electrode materials toward electrochemical energy storage. However, their fragile nature and weak binding forces with active materials could not guarantee long-term...


Author(s):  
Jingxuan Zhao ◽  
Zhibo Zhao ◽  
Yang Sun ◽  
Xiangdong Ma ◽  
Meidan Ye ◽  
...  

Taking into account of time-confusing preparation processing and unsatisfied desalination capacity of carbon nanomaterials, exploring efficient electrode materials remains a great challenge for practical capacitive deionization (CDI) application. In this...


Sign in / Sign up

Export Citation Format

Share Document