Metamodeling the heating and cooling energy needs and simultaneous building envelope optimization for low energy building design in Morocco

2015 ◽  
Vol 102 ◽  
pp. 139-148 ◽  
Author(s):  
Zaid Romani ◽  
Abdeslam Draoui ◽  
Francis Allard
2014 ◽  
Vol 899 ◽  
pp. 3-6 ◽  
Author(s):  
Martin Kamenský ◽  
Anna Vaskova ◽  
Marián Vertaľ

The next step in energy efficiency building design focus on near energy zero buildings. To design such buildings is important to understand how people use low energy building and to find reserves in energy. The paper presents an analysis of reserves in a family house. The analysis is done with simulations of different design and operation solutions based on knowledge from in situ measurements. Results show there are reserves in the heating and cooling period of year, which can lead to further energy savings of up to 15% and internal environment improvements.


2021 ◽  
Vol 13 (5) ◽  
pp. 2718
Author(s):  
Bianca Seabra ◽  
Pedro F. Pereira ◽  
Helena Corvacho ◽  
Carla Pires ◽  
Nuno M. M. Ramos

Social housing represents a part of the whole building stock with a high risk of energy poverty, and it should be treated as a priority in renovation strategies, due to its potential for improvement and the need to fight that risk. Renovation actions are currently designed based on patterns that have been shown to be disparate from the reality of social housing. Thereby, a monitoring study is essential for the evaluation of the actual conditions. An in-depth characterization of a social housing neighborhood, located in the North of Portugal, was carried out. Indoor hygrothermal conditions were analyzed through a monitoring campaign. It was possible to identify the differences in indoor conditions of the dwellings and understand the influence of occupancy density and occupants’ behavior. In order to identify the actual occupancy and the type of use, a social survey was performed. A renovation action will soon take place, and a monitoring and survey plan is proposed for the post-renovation period, based on a previous evaluation of the renovation impact, using DesignBuilder software and the real occupancy profiles. In social housing context, since energy consumption for heating and cooling is punctual or non-existent, the focus of low energy renovation should be based on passive strategies that reduce the energy demand. The remaining energy needs should be supplied by renewable energy sources, reducing energy poverty, and enhancing quality of life.


2020 ◽  
Vol 24 (2 Part B) ◽  
pp. 1261-1273
Author(s):  
Tugce Pekdogan ◽  
Sedat Akkurt ◽  
Tahsin Basaran

The low energy building concept is based on improving the building envelope to reduce heating and cooling loads. Improvements in building envelopes depend not only on climatic conditions but also on insulation. In this study, the thermal performance of external walls was studied by using a three-level full factorial statistical experimental design. An opaque wall in low energy buildings was chosen in order to study the effect of selected factors of city (A), orientation (B), insulation location (C), and month of the year (D) on heat loss or gain. A software was used to calculate the ANOVA table. As a result, all three factors of months of the year, city and orientation of the building fa?ade were found to be significant factor effects for heat transfer. Two-factor interactions of AB, AD, BD, and CD were found to be significant. Therefore, the effects of season, location and orientation were successfully shown to be effective parameters.


2019 ◽  
Vol 11 (11) ◽  
pp. 3078 ◽  
Author(s):  
Giacomo Chiesa ◽  
Andrea Acquaviva ◽  
Mario Grosso ◽  
Lorenzo Bottaccioli ◽  
Maurizio Floridia ◽  
...  

Counterbalancing climate change is one of the biggest challenges for engineers around the world. One of the areas in which optimization techniques can be used to reduce energy needs, and with that the pollution derived from its production, is building design. With this study of a generic office located both in a northern country and in a temperate/Mediterranean site, we want to introduce a coding approach to dynamic energy simulation, able to suggest, from the early-design phases when the main building forms are defined, optimal configurations considering the energy needs for heating, cooling and lighting. Generally, early-design considerations of energy need reduction focus on the winter season only, in line with the current regulations; nevertheless a more holistic approach is needed to include other high consumption voices, e.g., for space cooling and lighting. The main considered design parameter is the WWR (window-to-wall ratio), even if further variables are considered in a set of parallel analyses (level of insulation, orientation, activation of low-cooling strategies including shading devices and ventilative cooling). Finally, the effect of different levels of occupancy was included in the analysis to regress results and compare the WWR with corresponding heating and cooling needs. This approach is adapted to Passivhaus design optimization, working on energy need minimisation acting on envelope design choices. The results demonstrate that it is essential to include, from the early-design configurations, a larger set of variables in order to optimize the expected energy needs on the basis of different aspects (cooling, heating, lighting, design choices). Coding is performed using Python scripting, while dynamic energy simulations are based on EnergyPlus.


Author(s):  
Roberto Giordano ◽  
Cristina Allione ◽  
Andrè Clos ◽  
Elena Montacchini ◽  
Silvia Tedesco

<p>The targets set out by European Directives concerning the energy savings in the construction sector refer both to building envelope and to its services. With regard to building services it is mandatory meeting requirements related to heating, cooling, lighting and ventilation.</p><p>Building services take up a variable space in the buildings that cannot be considered anymore negligible and they would always be fully integrated into buildings.</p><p>Equipped and Eco-efficient Technological Module (MOTE2) is a research project aimed at implementing the integration in a unique services cupboard of some building services: heating and cooling; domestic hot water; mechanical ventilation.</p><p>The project was organized according to four main phases. In phase 1 a set of rules was defined matching requirements related to the energy efficiency to environmental building design standards. During the phase 2 six building models were studied in order to size the corresponding building services according to scenario analysis set down for existing buildings. In phase 3 the project was focused on designing the assembly among services.</p><p>The cupboard design is like a Tetris® game through the planning of the best combination among services shape. Based on the drawings developed a first mock-up was built up and monitored. Finally, in phase 4 the paper deals with the MOTE2’s expected performances.</p><p>Outlook and some conclusions point out the future steps of the research activities.</p>


Author(s):  
Roger Hitchin

Policies to reduce carbon emissions are leading to substantial changes in the demand for electricity and to the structure of electricity supply systems, which will alter the cost structure of electricity supply. This can be expected to result in corresponding changes to the price structure faced by customers. This note is an initial exploration of how possible new price structures may impact on HVAC system and building design and use. Changes in the price structure of electricity supply (separately from changes in price levels) can significantly affect the cost-effective design and operation of building services systems; especially of heating and cooling systems. The nature and implications of these changes can have important implications for future system design and operation.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 512
Author(s):  
Younhee Choi ◽  
Doosam Song ◽  
Sungmin Yoon ◽  
Junemo Koo

Interest in research analyzing and predicting energy loads and consumption in the early stages of building design using meta-models has constantly increased in recent years. Generally, it requires many simulated or measured results to build meta-models, which significantly affects their accuracy. In this study, Latin Hypercube Sampling (LHS) is proposed as an alternative to Fractional Factor Design (FFD), since it can improve the accuracy while including the nonlinear effect of design parameters with a smaller size of data. Building energy loads of an office floor with ten design parameters were selected as the meta-models’ objectives, and were developed using the two sampling methods. The accuracy of predicting the heating/cooling loads of the meta-models for alternative floor designs was compared. For the considered ranges of design parameters, window insulation (WDI) and Solar Heat Gain Coefficient (SHGC) were found to have nonlinear characteristics on cooling and heating loads. LHS showed better prediction accuracy compared to FFD, since LHS considers the nonlinear impacts for a given number of treatments. It is always a good idea to use LHS over FFD for a given number of treatments, since the existence of nonlinearity in the relation is not pre-existing information.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1080
Author(s):  
Mamdooh Alwetaishi ◽  
Omrane Benjeddou

The concern regarding local responsive building design has gained more attention globally as of late. This is due to the issue of the rapid increase in energy consumption in buildings for the purpose of heating and cooling. This has become a crucial issue in educational buildings and especially in schools. The major issue in school buildings in Saudi Arabia is that they are a form of prototype school building design (PSBD). As a result, if there is any concern in the design stage and in relation to the selection of building materials, this will spread throughout the region. In addition to that, the design is repeated regardless of the climate variation within the kingdom of Saudi Arabia. This research will focus on the influence of the window to wall ratio on the energy load in various orientations and different climatic regions. The research will use the energy computer tool TAS Environmental Design Solution Limited (EDSL) to calculate the energy load as well as solar gain. During the visit to the sample schools, a globe thermometer will be used to monitor the globe temperature in the classrooms. This research introduces a framework to assist architects and engineers in selecting the proper window to wall ratio (WWR) in each direction within the same building based on adequate natural light with a minimum reliance on energy load. For ultimate WWR for energy performance and daylight, the WWR should range from 20% to 30%, depending on orientation, in order to provide the optimal daylight factor combined with building energy efficiency. This ratio can be slightly greater in higher altitude locations.


Sign in / Sign up

Export Citation Format

Share Document