scholarly journals Smart versus conventional lighting in apartments - Electric lighting energy consumption simulation for three different households

2021 ◽  
pp. 111009
Author(s):  
Nima Hafezparast Moadab ◽  
Thomas Olsson ◽  
Géza Fischl ◽  
Myriam Aries
2021 ◽  
Vol 1904 (1) ◽  
pp. 012005
Author(s):  
Wang Xianru ◽  
Zhang Xinmin ◽  
Zhu Han ◽  
Yu Xuyun

2016 ◽  
Vol 9 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Mohammad Gerami Tehrani ◽  
Juuso Kelkka ◽  
Jussi Sopanen ◽  
Aki Mikkola ◽  
Kimmo Kerkkänen

2017 ◽  
Vol 9 (12) ◽  
pp. 2245 ◽  
Author(s):  
Chen Xu ◽  
Yu Li ◽  
Xueting Jin ◽  
Liang Yuan ◽  
Hao Cheng

Author(s):  
Michael J. Cheadle ◽  
Gregory F. Nellis ◽  
Sanford A. Klein ◽  
William A. Beckman

Hybrid solar lighting (HSL) systems distribute natural sunlight to luminaires located in office or retail buildings in order to reduce energy consumption associated with conventional lighting systems. HSL systems reduce energy consumption directly by reducing the lighting energy and indirectly by reducing the associated cooling loads. A key component of the HSL system is the fiber optic bundle (FOB) that transmits the light from the collector to the luminaire. The observed thermal failure of the FOB when exposed to concentrated sunlight has motivated the development of a thermal model of this component. This paper describes the development of a predictive thermal model of the heat transfer in an FOB for an HSL system. The model is verified experimentally against temperature measurements obtained in the lab under controlled conditions and provides a powerful design tool that can be used to evaluate alternative thermal management strategies.


Author(s):  
Heangwoo Lee ◽  
Janghoo Seo

While previous research has shown the use of attachable air-caps on windows to efficiently reduce a building’s energy consumption, the air-caps considered had to be attached to the entire window’s surface, thus limiting the occupants’ view and creating the inconvenience of needing to detach and attach the air-caps. In this study, a window-mounted air-cap roller module using Velcro tape that may be easily attached, detached, and rolled up or down was developed and performance tested in a full-scale test bed. It was found that as the area of the air-caps attached on a window increased, the required indoor lighting energy increased. However, the window insulation improved, thus reducing the cooling and heating energy needed. Attaching the air-caps to the entire window surface effectively reduced the building’s energy consumption, but views through the window may be disturbed. Thus, the developed window-mounted air-caps enable an occupant to reduce the building energy consumption and maintain their view according to their need. The findings of this study may contribute to a reduction in building energy consumption without sacrificing a pleasant indoor environment. Further studies may be needed to verify their efficacy under varying indoor and outdoor conditions.


2010 ◽  
Vol 16 (3) ◽  
pp. 345-351 ◽  
Author(s):  
Violeta Motuzienė ◽  
Egidijus Saulius Juodis

The number of office buildings with highly fenestrated facades is currently increasing in Lithuania and neighboring countries. Highly fenestrated facades reduce energy consumption for lighting and simultaneously increase energy consumption for heating, cooling, air conveying and may cause thermal and visual discomfort. Pursuing to reduce negative effects of the highly glazed facade, special glasses are frequently used. However, such windows usually increase demand for lighting energy. Therefore, when making early decisions about glazing the building, it is important to have a complex evaluation of energy demand related to the specific case. The paper presents the results of analysis made using energy simulation tools. The obtained results have shown that when shading is not applied, the north is the most energy efficient orientation to glazing for an air conditioned office building in cool climate zones like Lithuania. The most energy efficient window‐to‐wall ratios (WWR) for the south, east and west oriented façade are 20%, whereas for the north it makes 20–40%. However, such WWR values do not satisfy standard requirements for day lighting. Santrauka Pastaraisiais metais Lietuvoje ir kaimyninese šalyse daugeja administracines paskirties pastatu, kuriu dauguma išoriniu atitvaru yra skaidrios. Didesnis istiklinimo plotas lemia mažesnius energijos poreikius apšvietimui, tačiau didina šildymo ir vesinimo sistemu energijos poreikius, sukelia šilumini bei vizualini diskomforta. Neigiamai dideliu skaidriu atitvaru itakai sumažinti naudojami tamsinti ir kitu specialiu charakteristiku stiklai, tačiau tai savo ruožtu didina energijos poreiki apšvietimui. Todel, priimant sprendimus del pastato istiklinimo, svarbu prieš tai kompleksiškai išnagrineti konkretaus sprendimo itaka pastato energijos poreikiams. Straipsnyje pateikiama modeliuojant gautu rezultatu analize. Rezultatai parode, kad vesaus klimato šalyse, kurioms priklauso ir Lietuva, kondicionuojamu administraciniu pastatu fasadu, kai nenaudojamos apsaugos nuo saules priemones, energiškai efektyviausias istiklinimas yra i šiaures puse. Energiškai efektyviausias santykinis fasado istiklinimo plotas pietines, rytines ir vakarines orientacijos fasadams yra 20 %, o šiaurines ‐ 20–40 %. Tačiau tokie istiklinimo plotai neatitinka norminiu natūralaus apšvietimo reikalavimu.


2016 ◽  
Vol 26 (6) ◽  
pp. 796-812 ◽  
Author(s):  
Heangwoo Lee ◽  
Sang-hoon Gim ◽  
Janghoo Seo ◽  
Yongseong Kim

Various ongoing studies regard light-shelves as one solution to the recent increase in lighting energy consumption. However, in previous light-shelf systems, the direction of incoming light was determined by external conditions, thereby limiting the efficiency of lighting energy saving. The purpose of the present study was to develop a movable light-shelf system with location-awareness technology and verify its performance. In this study, a full-scale testbed was established in order to test the proposed movable light-shelf system with location awareness as well as to verify its energy saving potential. The results were analysed and compared with the performances of previous fixed (Case 1) and movable (Case 2) light-shelf systems without location-awareness technology. The obtained results were as follows. (1) The proposed light-shelf system can respond to external conditions and to the location of the occupant by means of the control axis of the light-shelf module angle through modulation between the control axis of the angle of the previous light-shelf and the reflector of the light-shelf. (2) The proposed light-shelf system provides 90.0% and 86.6%/91.0% energy savings in comparison to Case 1 and Case 2, respectively.


Sign in / Sign up

Export Citation Format

Share Document