Nature-inspired moisture management fabric for unidirectional liquid transport and surface repellence and resistance

2021 ◽  
pp. 111203
Author(s):  
Chao Zou ◽  
Lihong Lao ◽  
Qing Chen ◽  
Jintu Fan ◽  
Dahua Shou
2021 ◽  
Vol 16 ◽  
pp. 155892502110667
Author(s):  
Changliu Chu ◽  
Chengwen Hu ◽  
Yanyan Sun ◽  
Hongqin Yan ◽  
Yadong Zhang ◽  
...  

The liquid transport capacity in a fibrous textile is of great crucial in comprehensively assessing the final moisture management. In this work, several materials were prepared based on cotton rovings by regulating some technological parameters such as twist and ply number, and the effects of the above key parameters on vertical wicking behavior of cotton roving-based materials were investigated. To effectively improve the wicking rate of materials, three hydrophilic schemes were introduced. The experimental results indicated that the maximum vertical wicking height was obtained when samples treated with a mixed solution of 1.5% JFC and 3% NaOH. Subsequently, several cotton roving-based materials were fabricated based on the optimized hydrophilic treatment. It was found that, the as-prepared materials exhibit a twist-reduced wicking effect, and a ply number-strengthen effect. Furthermore, the underlying mechanisms in the above two cases were unraveled. Finally, our prepared cotton roving-based materials served as a nutrient absorbing medium were demonstrated. Such work provides certain support for an in-depth understanding of wicking behavior of microporous textile structures.


2015 ◽  
Vol 69 (2) ◽  
pp. 193-200 ◽  
Author(s):  
Milada Novakovic ◽  
Lana Putic ◽  
Matejka Bizjak ◽  
Snezana Stankovic

Moisture management is a complicated process which is known to be influenced by a variety of fabric characteristics such as fibre nature (hydrophilic or hydrophobic), porosity and thickness. There are different aspects of the moisture management properties of textile materials since water transport in textile materials can be in the form of liquid and vapour. The ability of textile materials to transfer water vapour allows the human body to keep thermal balance due to evaporation. With stronger physical activity of a person when the body produces a large amount of heat, the skin perspiration increases (in order to regulate the body temperature) and liquid sweat should be taken from the skin, otherwise it will worsen the sense of comfort. The aim of this research was to investigate the factors influencing moisture management properties of plain knitted fabrics at the three scale levels, i.e. microscopic (fibre type), mesoscopic (yarn geometry) and macroscopic (fabric porosity) levels. Plain knitted fabrics were produced from the two-assembled hemp, cotton and viscose yarns under controlled conditions so as to be comparable in basic construction characteristics, but varying in yarns geometry. Evaporative resistance test reflecting vapour transport and water distribution test reflecting liquid transport in the knitted fabrics were conducted. To determine the statistical importance of the results, analysis of variance (ANOVA) was applied. As a consequence of the geometry and deformation behaviour of the fibres used and spinning techniques applied, the yarns differed in both packing density and surface geometry, thus determining the pore distribution. Due to loose structure of the cotton yarn, the cotton knitted fabric was characterised by the lowest free open surface (macroporosity) exhibiting the lowest both water vapour and liquid permeability. Although having the highest macroporosity, the water vapour and liquid transport capability of the hemp knitted fabric was lower than that of the viscose knit. The best moisture management properties of the viscose knitted fabric were resulted from viscose affinity for water absorption and increased surface area of the viscose yarn. The results obtained proved that variations in any of the hierarchical structure levels can modify moisture transport ability of textile fabrics. Therefore, the moisture management properties of textile materials can be guided in a desired direction by the appropriate selection of fibres and careful design of yarn structure.


2019 ◽  
Vol 70 (06) ◽  
pp. 495-501
Author(s):  
SERAP BILTEKIN ◽  
AYÇA AYÇA

In recent years, baby clothing has become an important role in the garment sector. The increasing importance of baby clothing, along with the new designs, different fabric structures, accessories and clothing comfort is required to develop. Due to the increasing importance given to baby health in the world, babywears have to be manufactured from materials that are not harmful to health in accordance with the standards. The purpose of this study is to investigate the effect of cotton knitted fabrics structure of babywear on moisture management properties. For this reason, moisture management properties (wetting time, absorption rate, spreading speed, accumulative one-way transport capability (OWTC) and overall moisture management capability (OMMC)) of cotton knitted fabrics of different structures which are widely used in babywear have been examined. Moisture management tester was used for liquid transport of the knitted fabric samples. As a result of the study, it is observed that single jersey fabric had higher OMMC values than these of interlock and 1x1 rib knitted fabrics. Regarding the effect of yarn thickness, liquid transport increased with decreasing yarn thickness in general. Regarding the effect of fabric weight and fabric thickness, liquid transport decreased with increasing weight and thickness in general. Negative correlations were observed between fabric weight, fabric thickness and overall moisture management capability.


2021 ◽  
Vol 30 (Sup8) ◽  
pp. 25-35
Author(s):  
Peta Lager ◽  
Lisa Loxdale

Leaks and peristomal skin complications are highly prevalent among people with a stoma, reported by over 80% of ostomates within 2 years of surgery. This suggests that there is room for improvement in ostomy appliances, particularly in their hydrocolloid-based adhesive flanges. Hydrocolloid has an absorptive method of moisture management that, over time, risks maceration and skin stripping, potentially leading to moisture-associated skin damage (MASD) and medical adhesive-related skin injury (MARSI). The newly developed Genii ostomy appliances (Trio Healthcare) use novel Sil2 Breathable Silicone Technology to provide secure, effective adhesion and manage moisture levels by replicating natural transepidermal water loss (TEWL). This has the potential to increase appliance wear time, reduce incidence of MASD and permit atraumatic removal without adhesive remover, reducing the risks of MARSI, as well as time burdens on the user and economic burdens on the healthcare system. Meanwhile, the silicone flanges and water-resistant sports fabric pouches are lightweight, flexible and unobtrusive, and they are the first appliances to be available in colours to match different skin tones, all of which provides security, comfort, confidence and discretion. This article explores the features of Sil2 and Genii ostomy appliances, with reference to preliminary data from a user evaluation.


Author(s):  
Pulak Sarkar ◽  
Solagna Modak ◽  
Santanu Ray ◽  
Vasista Adupa ◽  
K. Anki Reddy ◽  
...  

Liquid transport through the composite membrane is inversely proportional to the thickness of its separation layer. While the scalable fabrication of ultrathin polymer membranes is sought for their commercial exploitation,...


2021 ◽  
Vol 16 ◽  
pp. 155892502110295
Author(s):  
Abdus Shahid ◽  
Solaiman Miah ◽  
Abdur Rahim

Jute bags are widely used to carry food grains and other materials that may be prone to quality deterioration due to thermal fluctuation. Thermal and moisture properties play a significant role in the packaging materials in the form of a container. This study deals with the effect of microencapsulated phase change material (MPCM) with hydrophobic binder on thermal and moisture management properties of jute fabric. Jute fabric was treated with MPCM by pad-dry-cure method. The treated sample was characterized by thermogravimetric analysis (TGA), differential scanning colorimeter (DSC), scanning electron microscope (SEM), moisture management tester (MMT), and air permeability tester. The results revealed that MPCM treated jute fabric shows greater thermal stability and heat absorption ability of 10.58 J/g while changing from solid to liquid phase. The SEM image ensures even distribution of MPCMs on fabric surface and surface roughness was also observed using image processing software. The air permeability was found to decrease whereas the water repellency enhanced in the developed sample.


2021 ◽  
Vol 30 (Sup8) ◽  
pp. 19-24
Author(s):  
Fiona Le Ber

Fiona Le Ber answers some of the questions that stoma care nurses may have regarding this novel silicone adhesive based technology, which helps to avoid medical adhesive related skin injury (MARSI) and moisture-associated skin damage (MASD). Whereas hydrocolloid stoma appliances absorb moisture, this has a non-absorptive method of moisture management that prevents peristomal skin becoming damp and excoriated.


2021 ◽  
pp. 174425912198938
Author(s):  
Michael Gutland ◽  
Scott Bucking ◽  
Mario Santana Quintero

Hygrothermal models are important tools for assessing the risk of moisture-related decay mechanisms which can compromise structural integrity, loss of architectural features and material. There are several sources of uncertainty when modelling masonry, related to material properties, boundary conditions, quality of construction and two-dimensional interactions between mortar and unit. This paper examines the uncertainty at the mortar-unit interface with imperfections such as hairline cracks or imperfect contact conditions. These imperfections will alter the rate of liquid transport into and out of the wall and impede the liquid transport between mortar and masonry unit. This means that the effective liquid transport of the wall system will be different then if only properties of the bulk material were modelled. A detailed methodology for modelling this interface as a fracture is presented including definition of material properties for the fracture. The modelling methodology considers the combined effect of both the interface resistance across the mortar-unit interface and increase liquid transport in parallel to the interface, and is generalisable to various combinations of materials, geometries and fracture apertures. Two-dimensional DELPHIN models of a clay brick/cement-mortar masonry wall were created to simulate this interaction. The models were exposed to different boundary conditions to simulate wetting, drying and natural cyclic weather conditions. The results of these simulations were compared to a baseline model where the fracture model was not included. The presence of fractures increased the rate of absorption in the wetting phase and an increased rate of desorption in the drying phase. Under cyclic conditions, the result was higher peak moisture contents after rain events compared to baseline and lower moisture contents after long periods of drying. This demonstrated that detailed modelling of imperfections at the mortar-unit interface can have a definitive influence on results and conclusions from hygrothermal simulations.


Sign in / Sign up

Export Citation Format

Share Document