A combined cycle plant with air and fuel recuperator for captive power application, Part 1: Performance analysis and comparison with non-recuperated and gas turbine cycle with only air recuperator

2014 ◽  
Vol 79 ◽  
pp. 771-777 ◽  
Author(s):  
T.K. Gogoi
Author(s):  
Hossin Omar ◽  
Mohamed Elmnefi

The Pressurized Fluidized Circulating Bed (PFCB) combined cycle was simulated. The simulations balance the energy between the elements of the unit, which consists of gas turbine cycle and steam turbine cycle. The PFCB is used as a combustor and steam generator at the same time. The simulations were carried out for PFCB combined cycle plant for two cases. In the first case, the simulations were performed for combined cycle with reheat in the steam turbine cycle. While in the second case, the simulations were carried out for the PFCB combined cycle with extra combustor and steam turbine cycle with reheat. For both cases, the effect of steam inlet pressure on the combined cycle efficiency was predicted. It was found that increasing of steam pressure results in increase in the combined cycle thermal efficiency. The effect of the inlet flue gases temperature on the gas turbine and on the combined cycle efficiencies was also predicted. The maximum PFCB combined cycle efficiency occurs at a compression ratio of 18, which is the case of utilizing an extra combustor. The simulations were carried out for only one fuel composition and for a compression ratio ranges between 1 to 40.


Author(s):  
Edgar Vicente Torres González ◽  
Raúl Lugo Leyte ◽  
Helen Denise Lugo Méndez ◽  
Martín Salazar Pereyra ◽  
Juan José Ambriz García

One of the ways to make an efficient use of energy resources is to generate power from combined cycle power plants. Besides, the implementation of supplementary firing in a combined cycle plant helps to increase its generated power. In addition, the exergoeconomic analysis is pursued by 1) carrying out a systematic approach, based on the Fuel-Product methodology, in each component of the system; and 2) generating a set of equations, which allows compute the exergetic and exergoeconomic costs of each flow. For this analysis, the environmental conditions correspond 25 °C, 1.013 bar and 45 % relative humidity. Therefore, in this work an exergoeconomic analysis of a triple-level pressure combined cycle with a 2 × 2 × 1 arrangement with and without supplementary firing is performed, so the combined cycle with supplementary firing generates 484.62 MW and has a power relation between the gas turbine cycle and steam turbine cycle of 1.35:1. Meanwhile, the combined cycle without supplementary firing generates 427.25 MW with a power ratio of the gas turbine cycle and steam turbine cycle of 1.87:1.


Author(s):  
Mikhail Granovskii ◽  
Ibrahim Dincer ◽  
Marc A. Rosen

This paper deals with an exergetic performance analysis of a gas turbine cycle integrated with SOFCs with internal reforming. As the efficiency of a gas turbine cycle is mainly defined by the maximum temperature at the turbine inlet, this temperature is fixed at 1573 K for the analysis. In the cycle considered, the high-temperature gaseous flow from the turbine heats the input flows of natural gas and air, and is used to generate pressurized steam which is mixed with natural gas at the SOFC stack inlet to facilitate its conversion. The application of SOFCs provides the opportunity to reduce the exergy losses of the most irreversible process in the system: fuel combustion. Depending on the SOFC stack efficiency, the energy efficiency of the combined cycle reaches 70–80% which compares well to the efficiencies of 54–55% typical of conventional combined power generation cycles. Parametric studies are also undertaken to investigate how energy and exergy efficiencies of the integrated system change with variations in operating conditions. An increase in the efficiency of SOFCs is attained by increasing the fuel cell active area. Achieving the highest efficiency of the SOFC stack leads to a significant and non-proportional increase in the stack size and cost, and simultaneously to a decrease in steam generation, reducing the steam/methane ratio at the anode inlet and increasing the possibility of catalyst coking. Accounting for these factors, likely operating conditions of the SOFC stack in combination with a gas turbine cycle are presented.


2015 ◽  
Vol 5 (2) ◽  
pp. 89
Author(s):  
Munzer S. Y. Ebaid ◽  
Qusai Z. Al-hamdan

<p class="1Body">Several modifications have been made to the simple gas turbine cycle in order to increase its thermal efficiency but within the thermal and mechanical stress constrain, the efficiency still ranges between 38 and 42%. The concept of using combined cycle power or CPP plant would be more attractive in hot countries than the combined heat and power or CHP plant. The current work deals with the performance of different configurations of the gas turbine engine operating as a part of the combined cycle power plant. The results showed that the maximum CPP cycle efficiency would be at a point for which the gas turbine cycle would have neither its maximum efficiency nor its maximum specific work output. It has been shown that supplementary heating or gas turbine reheating would decrease the CPP cycle efficiency; hence, it could only be justified at low gas turbine inlet temperatures. Also it has been shown that although gas turbine intercooling would enhance the performance of the gas turbine cycle, it would have only a slight effect on the CPP cycle performance.</p>


Author(s):  
Edgar Vicente Torres González ◽  
Raúl Lugo Leyte ◽  
Martín Salazar Pereyra ◽  
Helen Denise Lugo Méndez ◽  
Miguel Toledo Velázquez ◽  
...  

In this paper is carried out a comparison between a gas turbine power plant and a combined cycle power plant through exergetic and environmental indices in order to determine performance and sustainability aspects of a gas turbine and combined cycle plant. First of all, an exergetic analysis of the gas turbine and the combined is carried out then the exergetic and environmental indices are calculated for the gas turbine (case A) and the combined cycle (case B). The exergetic indices are exergetic efficiency, waste exergy ratio, exergy destruction factor, recoverable exergy ratio, environmental effect factor and exergetic sustainability. Besides, the environmental indices are global warming, smog formation and acid rain indices. In the case A, the two gas turbines generate 278.4 MW; whereas 415.19 MW of electricity power is generated by the combined cycle (case B). The results show that exergetic sustainability index for cases A and B are 0.02888 and 0.1058 respectively. The steam turbine cycle improves the overall efficiency, as well as, the reviewed exergetic indexes. Besides, the environmental indices of the gas turbines (case A) are lower than the combined cycle environmental indices (case B), since the combustion gases are only generated in the combustion chamber.


Author(s):  
M. W. Horner ◽  
A. Caruvana

Final component and technology verification tests have been completed for application to a 2600°F rotor inlet temperature gas turbine. These tests have proven the capability of combustor, turbine hot section, and IGCC fuel systems and controls to operate in a combined cycle plant burning a coal-derived gas fuel at elevated gas turbine inlet temperatures (2600–3000°F). This paper presents recent test results and summarizes the overall progress made during the DOE-HTTT Phase II program.


Sign in / Sign up

Export Citation Format

Share Document