Reduction of CO2 emission for solar power backup by direct integration of oxy-combustion supercritical CO2 power cycle with concentrated solar power

2019 ◽  
Vol 201 ◽  
pp. 112161 ◽  
Author(s):  
Seongmin Son ◽  
Jin Young Heo ◽  
Nam Il Kim ◽  
Aqil Jamal ◽  
Jeong Ik Lee
Author(s):  
R. C. Knott ◽  
D. L. Sadowski ◽  
S. M. Jeter ◽  
S. I. Abdel-Khalik ◽  
H. A. Al-Ansary ◽  
...  

This research is a part of the DOE-funded SunShot project on “High Temperature Falling Particle Receiver.” Storing thermal energy using solid particulates is a way to mitigate the time of day dependency of concentrated solar power. Small particles may be stored easily, and can be used as a heat transfer medium to transfer heat to the power cycle working fluid through a heat exchanger. This study examines the physical characteristics of solid particulates of different materials kept inside large storage containers. Particle behavior at the expected high temperatures of the concentrated solar power cycle combined with the elevated pressure experienced within the storage container must be evaluated to assess the impact on their physical properties and ensure that the particles would not sinter thereby impacting flow through the system components particularly the receiver and heat exchanger. Sintering is a process of fusing two or more particles together to form a larger agglomerate. In the proposed concentrated solar power tower design, particles will experience temperatures from 600°C to 1000°C. The increase in temperature changes the physical characteristics of the particle, along with any impurities that could form particle to particle bonds. In addition, the hydrostatic pressure exerted on particles stored inside a storage unit increases the probability of sintering. Thus, it is important to examine the characteristics of particles under elevated temperatures and pressures. The experimental procedure involves heating particulates of a known mass and size distribution to temperatures between 600°C and 1000°C inside a crucible. As the temperature is held constant, the particulate sample is pressed upon by a piston pushing into the crucible with a known constant pressure. This process is repeated for different temperatures and pressures for varying lengths of time. The resulting particulates are cooled, and their size distribution is measured to determine the extent of sintering, if any, during the experiment. The particulates tested include various types of sand, along with alumina particles. The data from this experiment will allow designers of storage bins for the solid particulates to determine when significant sintering is expected to occur.


2016 ◽  
Vol 173 ◽  
pp. 589-605 ◽  
Author(s):  
R. Chacartegui ◽  
A. Alovisio ◽  
C. Ortiz ◽  
J.M. Valverde ◽  
V. Verda ◽  
...  

2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Ali Sulaiman Alsagri ◽  
Andrew Chiasson ◽  
Mohamed Gadalla

The aim of this study was to conduct thermodynamic and economic analyses of a concentrated solar power (CSP) plant to drive a supercritical CO2 recompression Brayton cycle. The objectives were to assess the system viability in a location of moderate-to-high-temperature solar availability to sCO2 power block during the day and to investigate the role of thermal energy storage with 4, 8, 12, and 16 h of storage to increase the solar share and the yearly energy generating capacity. A case study of system optimization and evaluation is presented in a city in Saudi Arabia (Riyadh). To achieve the highest energy production per unit cost, the heliostat geometry field design integrated with a sCO2 Brayton cycle with a molten-salt thermal energy storage (TES) dispatch system and the corresponding operating parameters are optimized. A solar power tower (SPT) is a type of CSP system that is of particular interest in this research because it can operate at relatively high temperatures. The present SPT-TES field comprises of heliostat field mirrors, a solar tower, a receiver, heat exchangers, and two molten-salt TES tanks. The main thermoeconomic indicators are the capacity factor and the levelized cost of electricity (LCOE). The research findings indicate that SPT-TES with a supercritical CO2 power cycle is economically viable with 12 h thermal storage using molten salt. The results also show that integrating 12 h-TES with an SPT has a high positive impact on the capacity factor of 60% at the optimum LCOE of $0.1078/kW h.


Sign in / Sign up

Export Citation Format

Share Document