Developing ORC engineering simulator (ORCES) to investigate the working fluid mass flow rate control strategy and simulate long-time operation

2020 ◽  
Vol 203 ◽  
pp. 112206 ◽  
Author(s):  
Kuo-Cheng Pang ◽  
Tzu-Chen Hung ◽  
Ya-Ling He ◽  
Yong-Qiang Feng ◽  
Chih-Hung Lin ◽  
...  
2007 ◽  
Vol 44 (2) ◽  
pp. 189-197 ◽  
Author(s):  
F. Durst ◽  
K. Haddad ◽  
A. Al-Salaymeh ◽  
Shadi Eid ◽  
B. Ünsal

Author(s):  
Ying Zhang ◽  
Arun Kumar Narasimhan ◽  
Mengjie Bai ◽  
Li Zhao ◽  
Shuai Deng ◽  
...  

Abstract Solar driven ORC system is a possible solution for small-scale power generation. A scroll expander is considered due to its better suitability among other positive displacement expanders for small-scale power outputs. This work conducted a test of an ORC system with an expansion valve by varying the working fluid mass flow rate in two scenarios. A dynamic system-level model of ORC was developed and validated with experimental data. The validated model was used to predict the ORC performance considering off-design conditions of expander and solar insolation. The experimental data showed that pressures and temperatures exhibited the same trend as that of the working fluid mass flow rate, of which the evaporation pressure was the most sensitive to this variation. The simulation results are in good agreement with the experimental results. Results from the dynamic model showed that the ORC power output was underestimated by up to 54.7%, when off-design performance of expander was not considered. Considering the expander off-design performance and solar insolation, a highest thermal efficiency of 7.6% and an expander isentropic efficiency of 80.6% were achieved.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3130
Author(s):  
Shahzada Zaman Shuja ◽  
Bekir Sami Yilbas ◽  
Hussain Al-Qahtani

A comparative study was carried out incorporating a novel approach for thermal performance evaluations of commonly used parabolic trough collectors, namely the Euro, Sky, and Helio troughs. In the analysis, pressurized water and therminol-VP1 (eutectic mixture of diphenyl oxide (DPO) and biphenyl) fluid were introduced as working fluids, and the governing equation of energy was simulated for various working fluid mass flow rates and inlet temperatures. The thermal performance of the troughs was assessed by incorporating the first- and second-law efficiencies and by using temperature increases and pressure drops of the working fluid. It was found that the first-law efficiency of the troughs increased with the working fluid mass flow rate, while it decreased with an increasing working fluid inlet temperature. The first-law efficiency remained the highest for the Euro trough, followed by the Sky and Helio troughs. The second-law efficiency reduced with an increasing working fluid mass flow rate, while it increased with an increasing working fluid inlet temperature. The second-law efficiency became the highest for the Helio Trough, followed by the Sky and Euro troughs. The temperature increase remained the highest along the length of the receiver for the Helio Trough compared to that corresponding to the Euro and Sky troughs for the same mass flow rate of the working fluid. The pressure drops in the working fluid became high for the Euro Trough, followed by the Sky and Helio troughs. The pressurized water resulted in higher second-law efficiency than the therminol-VP1 fluid did for all of the troughs considered.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Hannah R. Doran ◽  
Theo Renaud ◽  
Gioia Falcone ◽  
Lehua Pan ◽  
Patrick G. Verdin

AbstractAlternative (unconventional) deep geothermal designs are needed to provide a secure and efficient geothermal energy supply. An in-depth sensitivity analysis was investigated considering a deep borehole closed-loop heat exchanger (DBHE) to overcome the current limitations of deep EGS. A T2Well/EOS1 model previously calibrated on an experimental DBHE in Hawaii was adapted to the current NWG 55-29 well at the Newberry volcano site in Central Oregon. A sensitivity analysis was carried out, including parameters such as the working fluid mass flow rate, the casing and cement thermal properties, and the wellbore radii dimensions. The results conclude the highest energy flow rate to be 1.5 MW, after an annulus radii increase and an imposed mass flow rate of 5 kg/s. At 3 kg/s, the DBHE yielded an energy flow rate a factor of 3.5 lower than the NWG 55-29 conventional design. Despite this loss, the sensitivity analysis allows an assessment of the key thermodynamics within the wellbore and provides a valuable insight into how heat is lost/gained throughout the system. This analysis was performed under the assumption of subcritical conditions, and could aid the development of unconventional designs within future EGS work like the Newberry Deep Drilling Project (NDDP). Requirements for further software development are briefly discussed, which would facilitate the modelling of unconventional geothermal wells in supercritical systems to support EGS projects that could extend to deeper depths.


Sign in / Sign up

Export Citation Format

Share Document