scholarly journals Optimal strategies of deployment of far offshore co-located wind-wave energy farms

2022 ◽  
Vol 251 ◽  
pp. 114914
Author(s):  
Aitor Saenz-Aguirre ◽  
Jon Saenz ◽  
Alain Ulazia ◽  
Gabriel Ibarra-Berastegui
2015 ◽  
Vol 10 (1) ◽  
pp. 26-37 ◽  
Author(s):  
Marcelo Caire ◽  
Carlos Eduardo Silva de Souza ◽  
João Paulo Ramos Cortina

Author(s):  
Thiago S. Hallak ◽  
José F. Gaspar ◽  
Mojtaba Kamarlouei ◽  
Miguel Calvário ◽  
Mário J. G. C. Mendes ◽  
...  

This paper presents a study regarding a novel hybrid concept for both wind and wave energy offshore. The concept resembles a semi-submersible wind platform with a larger number of columns. Wave Energy Devices such as point absorbers are to be displayed around the unit, capturing wave energy while heaving and also enhancing the stability of the platform. In this paper, a first numerical study of the platform’s hull, without Wave Energy Converters, is carried out. Experiments in wave basin regarding the same unit have been conducted and the results are presented and compared to the numerical ones. Both stability and seakeeping performances are assessed and compared.


2021 ◽  
Author(s):  
Hector Lobeto ◽  
Melisa Menendez ◽  
Iñigo J. Losada ◽  
Ottavio Mazzaretto

<p>The assessment of the projected changes in wave climate due to climate change has been subject of study during the last two decades (Morim et al., 2018), largely due to the severe impacts these changes may have on coastal processes such as flooding and erosion. The wind wave climate is fully described by the sea surface elevation spectrum, which represents the distribution of energy resulting from the contributions of several superimposed waves with different periods and directions. Nevertheless, to this day the standard approach to address the future behavior of wind waves is based on the use of integrated wave parameters (e.g. significant wave height, mean wave period, mean wave direction) as a representation of the full spectrum. In this study, we analyze the changes in wave energy from directional spectra discretized in 24 directions and 32 frequencies in a number of locations distributed across all ocean basins, shedding light on the added value that an assessment based on the full spectrum offers with respect to the standard approach. In addition, the ESTELA method (Pérez et al., 2014) is applied to ease the understanding of the changes obtained in wave energy at the locations of study.</p><p>The spectral approach helps to assess the projected change in the energy of each wave system that reach a specific location. Results demonstrate that the use of integrated wave parameters can mask important information about the sign, magnitude and uncertainty of the actual projected changes in mean wave climate due to the offset of the expected variations in the different wave systems that integrate the spectrum. It is especially relevant at locations where an increase in the wave period or wave energy is hidden by the application of the standard approach, as these parameters are proven to play a key role in coastal processes. In addition, we reach relevant conclusions about the future behavior of swell systems. For instance, a robust increase in the energy carried by swells generated below 40°S can be observed in every ocean basin and both hemispheres, even beyond 30°N. Similarly, a decrease in the energy carried by northern swells can be observed close to the equator.</p>


2017 ◽  
Author(s):  
Alexander Cole ◽  
Matthew Fowler ◽  
Razieh Zangeneh ◽  
Anthony Viselli

This paper presents technical details for a unique newly constructed model testing facility for offshore renewable energy devices and other structures established through federal and state funding. The University of Maine (UMaine) has been an active contributor to research in the field of floating offshore wind turbine (FOWT) design and scale-model testing for the past 6 years. Due to a lack of appropriate test facilities in the United States, UMaine has led multiple 1:50 scale-model tests of FOWT platforms internationally, leading to the motivation to design and build a state-of-the-art test facility at UMaine which includes high-quality wind generation with waves and towing capabilities. In November of 2015, UMaine opened the Alfond Wind/Wave Ocean Engineering Laboratory (W2) at the Advanced Structures and Composites Center. This facility, shown in Figure 1, contains a 30m long x 9m wide x 0-4.5m variable floor depth test basin with a 16-paddle wave maker at one end and a parabolic wave attenuating beach at the other. This basin is unique in that it integrates a rotatable open-jet wind tunnel over the basin that is capable of simulating high-quality wind fields in excess of 10 m/s over a large test area. Since opening, the W2 has provided testing for various scale-model FOWT designs, oil and gas vessels such as a scale-model floating production storage and offloading (FPSO) vessel, and a large number of wave energy conversion (WEC) devices in support of the Department of Energy’s (DOE) Wave Energy Prize. In addition to scalemodel testing, the W2 facility supports a wide range of model construction equipment including a 2.0m x 4.0m x 0.1m tall 3D CNC waterjet, a 3m long x 1.5m wide x 1.4m tall 5-axis CNC router, and an additive manufacturing facility housing a 0.6m x 0.6m x 0.9m 3D printer. To expand the capability of W2, a towing system is currently being designed to operate in conjunction with the multi-directional wave maker, which is shown in Figure 5. This equipment will provide bi-directional towing for a variety of applications. In addition to standard resistance testing, the broad aspect ratio of the basin provides reduced blockage effects while the multi-directional wave maker allows for tow testing a large number of wave environments and headings. The moving floor enables intermediate to shallow water tow tank tests, which are important for capturing the wave kinematics applicable to coastal environments, while the relatively deep water depths support testing of large structures such as tidal turbines and tow-out operations for THE 30th AMERICAN TOWING TANK CONFERENCE WEST BETHESDA, MARYLAND, OCTOBER 2017 2 large offshore structures such as wind and wave floating energy platforms. To test the capabilities of this system, UMaine is constructing a 1:50-scale model of the David Taylor Model Basin (DTMB) 5415 to perform commissioning tests. The towing system is planned to be operational in 2018.


2020 ◽  
Vol 8 (8) ◽  
pp. 623
Author(s):  
Christian Kharif ◽  
Malek Abid

The generation of wind waves at the surface of a pre-existing underlying vertically sheared water flow of constant vorticity is considered. Emphasis is put on the role of the vorticity in water on wind-wave generation. The amplitude growth rate increases with the vorticity except for quite old waves. A limit to the wave energy growth is found in the case of negative vorticity, corresponding to the vanishing of the growth rate.


1985 ◽  
Vol 151 (-1) ◽  
pp. 427 ◽  
Author(s):  
Ian R. Young ◽  
Rodney J. Sobey

1998 ◽  
Vol 120 (4) ◽  
pp. 314-317 ◽  
Author(s):  
M. E. McCormick

It is common practice by wave energy conversion technologists to estimate long-term wave energy potentials at both offshore and coastal sites by using established wind-wave spectral formulas. It is shown that the use of these formulas can lead to both incorrect wave energy resource estimates and improperly designed conversion systems. The formulas are shown to poorly predict modal and peak spectral periods for long-term seas.


2015 ◽  
Vol 72 (4) ◽  
pp. 570-581 ◽  
Author(s):  
Joshua K. Raabe ◽  
Michael A. Bozek

Walleye (Sander vitreus) populations are cyclic because of biotic and abiotic factors, and wind activity, wave energy, and water levels may be influential given walleye spawn close to shore. We installed an anemometer and tridirectional velocimeter on a spawning reef in Big Crooked Lake, Wisconsin, in 2005 to determine wind–wave relationships and wave energy exceedance of critical velocities of both egg (affecting transport) and substrates (affecting abrasion or burial). To evaluate egg movement, we delineated egg locations at adhesive, postspawn, and black-eyed stages and surveyed on-shore for stranded eggs. We monitored water level with a staff gauge. Wind and wave velocities were significantly (p < 0.01) correlated, and wave velocities were significantly higher (p < 0.01) nearshore (2.0 m) than further from shore (4.6 m). Mean nearshore wave velocities were often sufficient to initiate movement of nonadhesive eggs (45% of records) and fine sand (39%) during egg incubation. Surveys indicated waves moved eggs closer to shore and some onto shore. Water level fluctuations (range = 2.4 cm) likely did not strand or desiccate eggs. We documented that wind and wave activity transports eggs and substrates and should be considered a critical factor in annual walleye egg survival and year-class strength.


Sign in / Sign up

Export Citation Format

Share Document