Measurements of the wind-wave energy flux in an opposing wind

1985 ◽  
Vol 32 (9) ◽  
pp. 731-732
1985 ◽  
Vol 151 (-1) ◽  
pp. 427 ◽  
Author(s):  
Ian R. Young ◽  
Rodney J. Sobey

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 460
Author(s):  
Takvor H. Soukissian ◽  
Flora E. Karathanasi

In the context of wave resource assessment, the description of wave climate is usually confined to significant wave height and energy period. However, the accurate joint description of both linear and directional wave energy characteristics is essential for the proper and detailed optimization of wave energy converters. In this work, the joint probabilistic description of wave energy flux and wave direction is performed and evaluated. Parametric univariate models are implemented for the description of wave energy flux and wave direction. For wave energy flux, conventional, and mixture distributions are examined while for wave direction proven and efficient finite mixtures of von Mises distributions are used. The bivariate modelling is based on the implementation of the Johnson–Wehrly model. The examined models are applied on long-term measured wave data at three offshore locations in Greece and hindcast numerical wave model data at three locations in the western Mediterranean, the North Sea, and the North Atlantic Ocean. A global criterion that combines five individual goodness-of-fit criteria into a single expression is used to evaluate the performance of bivariate models. From the optimum bivariate model, the expected wave energy flux as function of wave direction and the distribution of wave energy flux for the mean and most probable wave directions are also obtained.


Author(s):  
Qingyang Song ◽  
Hidenori Aiki

AbstractIntraseasonal waves in the tropical Atlantic Ocean have been found to carry prominent energy that affects interannual variability of zonal currents. This study investigates energy transfer and interaction of wind-driven intraseasonal waves using single-layer model experiments. Three sets of wind stress forcing at intraseasonal periods of around 30 days, 50 days and 80 days with a realistic horizontal distribution are employed separately to excite the second baroclinic mode in the tropical Atlantic. A unified scheme for calculating the energy flux, previously approximated and used for the diagnosis of annual Kelvin and Rossby waves, is utilized in the present study in its original form for intraseasonal waves. Zonal velocity anomalies by Kelvin waves dominate the 80-day scenario. Meridional velocity anomalies by Yanai waves dominate the 30-day scenario. In the 50-day scenario, the two waves have comparable magnitudes. The horizontal distribution of wave energy flux is revealed. In the 30-day and 50-day scenarios, a zonally alternating distribution of cross-equatorial wave energy flux is found. By checking an analytical solution excluding Kelvin waves, we confirm that the cross-equatorial flux is caused by the meridional transport of geopotential at the equator. This is attributed to the combination of Kelvin and Yanai waves and leads to the asymmetric distribution of wave energy in the central basin. Coastally-trapped Kelvin waves along the African coast are identified by along-shore energy flux. In the north, the bend of the Guinea coast leads the flux back to the equatorial basin. In the south, the Kelvin waves strengthened by local wind transfer the energy from the equatorial to Angolan regions.


2020 ◽  
Vol 50 (2) ◽  
pp. 531-534
Author(s):  
Theodore S. Durland ◽  
J. Thomas Farrar

AbstractLonguet-Higgins in 1964 first pointed out that the Rossby wave energy flux as defined by the pressure work is not the same as that defined by the group velocity. The two definitions provide answers that differ by a nondivergent vector. Longuet-Higgins suggested that the problem arose from ambiguity in the definition of energy flux, which only impacts the energy equation through its divergence. Numerous authors have addressed this issue from various perspectives, and we offer one more approach that we feel is more succinct than previous ones, both mathematically and conceptually. We follow the work described by Cai and Huang in 2013 in concluding that there is no need to invoke the ambiguity offered by Longuet-Higgins. By working directly from the shallow-water equations (as opposed to the more involved quasigeostrophic treatment of Cai and Huang), we provide a concise derivation of the nondivergent pressure work and demonstrate that the two energy flux definitions are equivalent when only the divergent part of the pressure work is considered. The difference vector comes from the nondivergent part of the geostrophic pressure work, and the familiar westward component of the Rossby wave group velocity comes from the divergent part of the geostrophic pressure work. In a broadband wave field, the expression for energy flux in terms of a single group velocity is no longer meaningful, but the expression for energy flux in terms of the divergent pressure work is still valid.


2012 ◽  
Vol 93 ◽  
pp. 364-370 ◽  
Author(s):  
P. Pinson ◽  
G. Reikard ◽  
J.-R. Bidlot

2020 ◽  
Author(s):  
Thomas Eriksen ◽  
Carsten Eden ◽  
Dirk Olbers

<p>A key component in setting the large scale ocean circulation is the process of diapycnal mixing, since this can drive the meridional overturning circulation. Diapycnal mixing in the interior ocean is predominantly associated with the breaking of internal waves. Traditionally, diapycnal mixing has been represented in ocean models by a diapycnal diffusivity either constant or exponentially decreasing with depth. This approach, however, does not take into account the actual physics behind the breaking of internal waves. The energetically consistent internal wave model IDEMIX (Internal wave Dissipation, Energetics and MIXing), on the other hand, computes diffusivities directly on the basis of internal wave energetics. One such type of internal waves are lee waves. These are generated and subsequently dissipated when geostrophic currents interact with bottom topography and are therefore believed to be a source of energy for deep ocean mixing. In this study IDEMIX is coupled to a 1/12<sup>th</sup> degree regional model of the Atlantic. The lee wave energy flux is calculated and used as a bottom flux at each time step effectively allowing lee waves to propagate, interact with mean flow and waves, and subsequently dissipate. This setup enables not only an estimate of the lee wave energy flux but also a direct investigation of the influence of lee waves on dissipation, stratification and horizontal and overturning circulation.</p>


2013 ◽  
Vol 20 (4) ◽  
pp. 042122 ◽  
Author(s):  
Omar Maj ◽  
Alberto Mariani ◽  
Emanuele Poli ◽  
Daniela Farina

2017 ◽  
Vol 14 (1) ◽  
Author(s):  
Nineu Yayu Geurhaneu ◽  
Fauzi Budi Prasetio ◽  
Godwin Latuputty

Lokasi penelitian terletak di bagian utara pulau Obi, Maluku. Tujuan penelitian ini adalah untuk mengkaji aspek kebencanaan geologi kelautan berupa pengumpulan data primer dan sekunder. Data primer meliputi hasil pengukuran kedalaman dan pemetaan karakteristik pantai. Data sekunder berupa energi gelombang yang dihitung melalui pendekatan energi fluks dari data angin di stasiun pengamatan Labuha/Taliabu tahun 2004 – 2013. Hasil penelitian berupa peta karakteristik pantai dan peta batimetri. Kedalaman daerah penelitian berkisar dari 0 sampai 310 meter dan perairan terdalam terletak di antara Pulau Obi dan Pulau Bisa. Kebencanaan geologi di Pulau Obi berupa banjir bandang, abrasi pantai dan tsunami.Kata kunci : kebencanaan geologi, energi fluks, banjir bandang, abrasi pantai dan tsunami, Pulau ObiThe study area is located on northern part of  Obi Island, Moluccas.  The research objective is to determine the potential of marine geological hazard by primary and secondary data collecting. Primary data consists of bathymetric and coastal characteristic mapping. Secondary data is from calculated wave energy flux by using wind data from Labuha / Taliabu observation stations (2004 – 2013). The result composed of coastal characteristic and bathymetric maps. The water depth range from 0 to 310 metres and the deepest part in between Obi and Bisa islands. The geological hazard on Obi Island consist of  flooding,coastal abrasion and tsunami.Keywords :  geological hazard, flux energy, flooding, coastal abrasion and tsunami, Obi Island


Sign in / Sign up

Export Citation Format

Share Document