Thermodynamic evaluation of an ORC system with a Low Pressure Saturated Steam heat source

Energy ◽  
2018 ◽  
Vol 149 ◽  
pp. 375-385 ◽  
Author(s):  
Dabiao Wang ◽  
Yuezheng Ma ◽  
Ran Tian ◽  
Jie Duan ◽  
Busong Hu ◽  
...  
Energy ◽  
2020 ◽  
Vol 210 ◽  
pp. 118380
Author(s):  
Dabiao Wang ◽  
Xiaoye Dai ◽  
Zhihua Wu ◽  
Wu Zhao ◽  
Puwei Wang ◽  
...  

2011 ◽  
Vol 32 (3) ◽  
pp. 57-70 ◽  
Author(s):  
Dariusz Mikielewicz ◽  
Jarosław Mikielewicz

Utilisation of bleed steam heat to increase the upper heat source temperature in low-temperature ORC In the paper presented is a novel concept to utilize the heat from the turbine bleed to improve the quality of working fluid vapour in the bottoming organic Rankine cycle (ORC). That is a completely novel solution in the literature, which contributes to the increase of ORC efficiency and the overall efficiency of the combined system of the power plant and ORC plant. Calculations have been accomplished for the case when available is a flow rate of low enthalpy hot water at a temperature of 90 °C, which is used for preliminary heating of the working fluid. That hot water is obtained as a result of conversion of exhaust gases in the power plant to the energy of hot water. Then the working fluid is further heated by the bleed steam to reach 120 °C. Such vapour is subsequently directed to the turbine. In the paper 5 possible working fluids were examined, namely R134a, MM, MDM, toluene and ethanol. Only under conditions of 120 °C/40 °C the silicone oil MM showed the best performance, in all other cases the ethanol proved to be best performing fluid of all. Results are compared with the "stand alone" ORC module showing its superiority.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1999 ◽  
Author(s):  
Qiuyi Wang ◽  
Xinwu Wu ◽  
Chenglong Yuan ◽  
Zhichao Lou ◽  
Yanjun Li

The aim of this study was to investigate the effects of the heat treatment time and initial moisture content of bamboo on the corresponding chemical composition, crystallinity, and mechanical properties after saturated steam heat treatment at 180 °C. The mechanism of saturated steam heat treatment of bamboo was revealed on the micro-level, providing a theoretical basis for the regulation of bamboo properties and the optimization of heat treatment process parameters. XRD patterns of the treated bamboo slices were basically the same. With the increase in the initial moisture content of bamboo, the crystallinity of bamboo increased first and then decreased after treatment. Due to the saturated steam heat treatment, the content of cellulose and lignin in bamboo slices increased while the content of hemicellulose decreased, but the content of cellulose in bamboo with a 40% initial moisture content increased first and then decreased. The shear strength of treated bamboo changed little within 10 min after saturated steam heat treatment, and then decreased rapidly. During the first 20 min with saturated steam heat treatment, the compressive strength, flexural strength, and flexural modulus of elasticity of the treated bamboo increased, and then decreased.


1982 ◽  
Vol 15 (4) ◽  
pp. 223-228 ◽  
Author(s):  
S. Bittanti ◽  
A. Cividini ◽  
R. Scattolini

2013 ◽  
Vol 341-342 ◽  
pp. 387-390
Author(s):  
Bing Cheng Liu ◽  
Chun Xiao Wang ◽  
De Biao Zhou ◽  
Chang Xin Jin

Nozzle plays an important role in steam turbine design and operation. With the purpose of design a new type low pressure saturated steam turbine, in this paper the model of steam flow inner nozzle was simulated, and the influences of tip angle, expansion section length and throat length on the efficiency of the nozzle were analyzed. Furthermore, the structure and parameter of nozzle were optimized.


2021 ◽  
Author(s):  
Tiancheng Yuan ◽  
Zhaoshun Wang ◽  
Xin Han ◽  
ZhuRun Yuan ◽  
XinZhou Wang ◽  
...  

Abstract In this paper, in order to analyze the quasi-static properties of Moso bamboo, a new, environmentally friendly and eco-friendly method was used for bamboo thermal modification under the effect of saturated steam. Under saturated steam heat treatment, the chemical composition in bamboo decreased, and the bamboo cell wall shrunk slightly. The increased crystallinity index of cellulose and decreased intensity of peaks belong to hemicellulose were confirmed by XRD and Fourier transform infrared (FTIR) spectroscopy. In addition, the highest modulus of elastic and hardness of treated bamboo were 22.5GPa and 1.1GPa at 180℃/10 min. These conclusions confirmed the micro-mechanical properties of the bamboo cell wall were enhanced by saturated steam heat treatment. The E'r of differently treated bamboo increased with increasing temperature and time, while the E''r and tan δ negatively as a function of increasing frequency. Furthermore, this thermal modification can be regarded as a useful, environmental-friendly and eco-friendly treatment to outdoor use of bamboo-based materials.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6648
Author(s):  
Young-Min Kim ◽  
Young-Duk Lee ◽  
Kook-Young Ahn

The supercritical carbon dioxide (S-CO2) power cycle is a promising development for waste heat recovery (WHR) due to its high efficiency despite its simplicity and compactness compared with a steam bottoming cycle. A simple recuperated S-CO2 power cycle cannot fully utilize the waste heat due to the trade-off between the heat recovery and thermal efficiency of the cycle. A split cycle in which the working fluid is preheated by the recuperator and the heat source separately can be used to maximize the power output from a given waste heat source. In this study, the operating conditions of split S-CO2 power cycles for waste heat recovery from a gas turbine and an engine were studied to accommodate the temperature variation of the heat sink and the waste heat source. The results show that it is vital to increase the low pressure of the cycle along with a corresponding increase in the cooling temperature to maintain the low-compression work near the critical point. The net power decreases by 6 to 9% for every 5 °C rise in the cooling temperature from 20 to 50 °C due to the decrease in heat recovery and thermal efficiency of the cycle. The effect of the heat-source temperature on the optimal low-pressure side was negligible, and the optimal high pressure of the cycle increased with an increase in the heat-source temperature. As the heat-source temperature increased in steps of 50 °C from 300 to 400 °C, the system efficiency increased by approximately 2% (absolute efficiency), and the net power significantly increased by 30 to 40%.


Author(s):  
Daniele Fiaschi ◽  
Giampaolo Manfrida ◽  
Lorenzo Talluri

The research deals with the possibility of effective exploitation of low temperature geothermal energy resources, which are generally much more widespread worldwide compared to conventional high temperature ones, typically available only in limited areas of the Earth. The basic idea is the application of an advanced binary cycle, only thermally coupled to the primary endogen heat source. The selected reference-power cycle is the well-known Kalina, which gives the possibility of optimizing the matching between heat capacities of the geothermal fluid (i.e. typically hot water or saturated steam) and the cycle working fluid, which is a non azeotropic NH3-H2O mixture with variable vaporization temperature at a fixed pressure. The heat transfer diagrams of the main Kalina heat exchangers, namely the condenser and the evaporator, are analysed with the aim of minimizing the irreversibilities related to the heat transfer. At different fixed NH3-H2O composition and condenser pressures, the evaporator pressure shows an efficiency optimizing value between 40 and 55 bar, generally increasing at higher condenser pressure. At fixed geothermal heat source temperature, condenser/evaporator pressures and working mixture composition, the cycle efficiency increases with increasing evaporator temperature, because of the reduction in the approach temperature difference between the geothermal and the working fluid. Higher efficiencies are found at higher NH3 concentrations. The proposed Water-Ammonia power cycle is further enhanced introducing a chiller (thus making the power cycle a CCP unit), thanks to the properties of the fluid mixture downstream the absorber, through an intermediate heat exchanger between the condenser and the evaporator. Mainly due to the better matching of heat capacities between the geothermal and the working fluid, the proposed power cycle offers the possibility of interesting improvements in electrical efficiency compared to traditionally proposed binary cycles using ORCs, at fixed temperature level of the heat source. In the investigated proposal, values of electric efficiency between 15 and 20% are found. An economic analysis is presented, demonstrating that the CCP system is able to produce electricity at decreased unit cost with respect to the power-only unit.


Sign in / Sign up

Export Citation Format

Share Document